Citation: | SONG J H, YAO S B, CHEN D W, et al. Mitigation of micro-pressure wave at high-speed maglev tunnel exit by resonant cavity structure[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 1-8. DOI: 10.11729/syltlx20220114 |
[1] |
田红旗. 列车空气动力学[M]. 北京: 中国铁道出版社, 2007.
TIAN H Q. Train aerodynamics[M]. Beijing: China Railway Publishing House, 2007.
|
[2] |
杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45(1): 217–460. DOI: 10.6052/1000-0992-14-002
YANG G W, WEI Y J, ZHAO G L, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45(1): 217–460. doi: 10.6052/1000-0992-14-002
|
[3] |
马伟斌, 张千里, 刘艳青. 中国高速铁路隧道气动效应研究进展[J]. 交通运输工程学报, 2012, 12(4): 25–32. DOI: 10.19818/j.cnki.1671-1637.2012.04.004
MA W B, ZHANG Q L, LIU Y Q. Study evolvement of high-speed railway tunnel aerodynamic effect in China[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 25–32. doi: 10.19818/j.cnki.1671-1637.2012.04.004
|
[4] |
宋军浩, 郭迪龙, 杨国伟, 等. 高速列车隧道通过中的气动效应动模型实验研究[J]. 实验流体力学, 2017, 31(5): 39–45. DOI: 10.11729/syltlx20170002
SONG J H, GUO D L, YANG G W, et al. Experimental investigation on the aerodynamics of tunnel-passing for high speed train with a moving model rig[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 39–45. doi: 10.11729/syltlx20170002
|
[5] |
向新桃. 高速铁路隧道压力波数值模拟研究[D]. 上海: 上海交通大学, 2016.
XIANG X T. Numerical investigations on the pressure waves generated by a high-speed train passing through a tunnel[J]. Shanghai: Shanghai Jiao Tong University, 2016. doi: 10.27307/d.cnki.gsjtu.2016.000147
|
[6] |
郭易, 单东日, 郭迪龙, 等. 高速列车隧道初始压缩波的动模型实验研究[J]. 力学与实践, 2018, 40(5): 495–502. DOI: 10.6052/1000-0879-18-120
GUO Y, SHAN D R, GUO D L, et al. Moving model analysis of the initial compression wave in tunnel for high-speed trains[J]. Mechanics in Engineering, 2018, 40(5): 495–502. doi: 10.6052/1000-0879-18-120
|
[7] |
SAITO S, FUKUDA T. Design of a tunnel entrance hood for high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104375. doi: 10.1016/j.jweia.2020.104375
|
[8] |
陶伟明. 高速铁路隧道洞口微气压波减缓措施效果研究[J]. 铁道工程学报, 2020, 37(8): 65–70. DOI: 10.3969/j.issn.1006-2106.2020.08.013
TAO W M. Research on the alleviation effects of micro pressure wave countermeasures at the high speed railway tunnel portal[J]. Journal of Railway Engineering Society, 2020, 37(8): 65–70. doi: 10.3969/j.issn.1006-2106.2020.08.013
|
[9] |
王田天, 胡冲, 龚彦峰, 等. 扩大斜切式缓冲结构对时速400 km铁路隧道口微气压波缓解研究[J]. 空气动力学学报, 2021, 39(5): 151–161. DOI: 10.7638/kqdlxxb-2021.0101
WANG T T, HU C, GONG Y F, et al. Mitigation of micro-pressure wave at 400 km/h railway tunnel exit by oblique enlarged tunnel-hood[J]. Acta Aerodynamica Sinica, 2021, 39(5): 151–161. doi: 10.7638/kqdlxxb-2021.0101
|
[10] |
史宪明, 吴剑, 冷希乔, 等. 补强套衬对高速铁路隧道洞口微气压波的影响[J]. 铁道建筑, 2017, 57(10): 53–55, 59. DOI: 10.3969/j.issn.1003-1995.2017.10.14
SHI X M, WU J, LENG X Q, et al. Influence of added lining on micro pressure wave of high speed railway tunnel portals[J]. Railway Engineering, 2017, 57(10): 53–55, 59. doi: 10.3969/j.issn.1003-1995.2017.10.14
|
[11] |
张童童, 闫亚光, 赵志超, 等. 高铁隧道内阶梯型缓冲结构气动效应分析[J]. 太原理工大学学报, 2022, 53(4): 779–785. DOI: 10.16355/j.cnki.issn1007-9432tyut.2022.04.025
ZHANG T T, YAN Y G, ZHAO Z C, et al. Analysis of aerodynamic effects of the inter-stepwise buffer structure in high-speed railway tunnel[J]. Journal of Taiyuan University of Technology, 2022, 53(4): 779–785. doi: 10.16355/j.cnki.issn1007-9432tyut.2022.04.025
|
[12] |
闫亚光, 杨庆山, 骆建军. 基于气动声学理论的喇叭型隧道缓冲结构优化[J]. 西南交通大学学报, 2016, 51(5): 832–839. DOI: 10.3969/j.issn.0258-2724.2016.05.003
YAN Y G, YANG Q S, LUO J J. Optimizing flared hood of tunnel based on aeroacoustics[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 832–839. doi: 10.3969/j.issn.0258-2724.2016.05.003
|
[13] |
李文辉, 刘堂红, 周苗苗, 等. 变截面隧道与典型缓冲结构气动效应缓解效果对比分析[J]. 中南大学学报(自然科学版), 2022, 53(5): 1572–1581. DOI: 10.11817/j.issn.1672-7207.2022.05.003
LI W H, LIU T H, ZHOU M M, et al. Comparative analysis on aerodynamic mitigation effects between tunnels with variable cross-section and typical tunnel hoods[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1572–1581. doi: 10.11817/j.issn.1672-7207.2022.05.003
|
[14] |
梅元贵, 李绵辉, 胡啸, 等. 时速600 公里磁浮列车隧道初始压缩波洞内传播特征和洞口微气压波特征[J]. 交通运输工程学报, 2021, 21(4): 150–162. DOI: 10.19818/j.cnki.1671-1637.2021.04.011
MEI Y G, LI M H, HU X, et al. Propagation characteristics of initial compression wave in cave and portal micro-pressure waves characteristics when 600 km·h-1 maglev train entering tunnels[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 150–162. doi: 10.19818/j.cnki.1671-1637.2021.04.011
|
[15] |
张洁, 王雨舸, 韩帅, 等. 缓冲结构长度对600 km/h磁浮列车通过隧道时的压力波特性影响分析[J]. 中南大学学报(自然科学版), 2022, 53(5): 1668–1678. DOI: 10.11817/j.issn.1672-7207.2022.05.012
ZHANG J, WANG Y G, HAN S, et al. Influence of hood length on pressure wave characteristics induced by 600 km/h maglev train passing through tunnel[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1668–1678. doi: 10.11817/j.issn.1672-7207.2022.05.012
|
[16] |
阮登芳. 共振式进气消声器设计理论及其应用研究[D]. 重庆: 重庆大学, 2005.
RUAN D F. The design theory and application on the resonant intake silencer[D]. Chongqing: Chongqing Univer-sity, 2005.
|
[17] |
TEBBUTT J A, VAHDATI M, CAROLAN D, et al. Numerical investigation on an array of Helmholtz resonators for the reduction of micro-pressure waves in modern and future high-speed rail tunnel systems[J]. Journal of Sound and Vibration, 2017, 400: 606–625. doi: 10.1016/j.jsv.2017.04.022
|
[18] |
LOMBARD B, MERCIER J. Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators[J]. Journal of Computational Physics, 2014, 259: 421–443. doi: 10.1016/j.jcp.2013.11.036
|
[19] |
王慕之, 梅元贵, 贾永兴. 重叠网格法应用于模拟高速列车隧道气动效应[J]. 应用力学学报, 2017, 34(3): 589–595, 618.
WANG M Z, MEI Y G, JIA Y X. Simulation of aerodynamic effects generated by a high-speed train passing through a tunnel with overset grid method[J]. Chinese Journal of Applied Mechanics, 2017, 34(3): 589–595, 618.
|
[20] |
任魁山. 时速600 公里磁浮铁路隧道洞口缓冲结构气动效应初步研究[D]. 兰州: 兰州交通大学, 2021.
REN K S. Preliminary study on aerodynamic effect of hood structure at the entrance of maglev railway tunnel with speed of 600 km/h[D]. Lanzhou: Lanzhou Jiaotong University, 2021. doi: 10.27205/d.cnki.gltec.2021.001300
|
[21] |
黄莎, 李志伟, 杨明智, 等. 高速磁浮列车通过隧道群时的压力波特性[J]. 中南大学学报(自然科学版), 2022, 53(5): 1770–1781. DOI: 10.11817/j.issn.1672-7207.2022.05.022
HUANG S, LI Z W, YANG M Z, et al. Pressure wave characteristics of high-speed maglev train passing through tunnel groups[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1770–1781. doi: 10.11817/j.issn.1672-7207.2022.05.022
|
[1] | ZHU Dongyu, FENG Qiang, Han Xiaotao, Yang Ximing, Cui Xiaochun, Yuan Li. Researches on a large natural moveable icing wind tunnel and test methods[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 52-61. DOI: 10.11729/syltlx20210100 |
[2] | GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, YANG Shengke, LIN Wei. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. DOI: 10.11729/syltlx20190113 |
[3] | ZHU Xinxin, LONG Yongsheng, SHI Youan, YANG Qingtao, ZHOU Ping, ZHAO Shunhong. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 87-93. DOI: 10.11729/syltlx20190062 |
[4] | Zhang Hui, Fan Litao. Correlation analysis of large low speed wind tunnel test on CHN-T1 calibration model[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 106-111. DOI: 10.11729/syltlx20180046 |
[5] | Gao Guochi, Li Baoliang, Ding Li, Wang Zixu, Ni Zhangsong. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 95-101. DOI: 10.11729/syltlx20180064 |
[6] | Wang Zixu, Shen Hao, Guo Long, Guo Xiangdong, Ni Zhangsong. Cloud calibration method of 3m×2m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67. DOI: 10.11729/syltlx20170163 |
[7] | Zhou Feng, Feng Lijuan, Xu Chaojun, Zhao Keliang, Han Zhirong. Determination and verification of critical ice shape for the certification of civil aircraft[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 8-13. DOI: 10.11729/syltlx20160019 |
[8] | Shen Chen, Yang Zhigang. Numerical methods exploration and experimental validation of Ahmed model with consideration of fluid-solid-interaction effect[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 37-42. DOI: 10.11729/syltlx20130017 |
[9] | YUAN Hong-gang, YANG Yong-dong, ZHANG Gui-chuan, HUANG Ming-qi. Improving techniques and validating of rotor and fuselage compound model test stand[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4): 87-90. DOI: 10.3969/j.issn.1672-9897.2012.04.018 |
[10] | GUO Shan-guang, LIU Jun, JIN Liang, LUO Shi-bin. Numerical simulation and experiment validation on shock oscillations of inner flow path of hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 7-11. DOI: 10.3969/j.issn.1672-9897.2012.01.002 |