SONG J H, YAO S B, CHEN D W, et al. Mitigation of micro-pressure wave at high-speed maglev tunnel exit by resonant cavity structure[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 1-8. DOI: 10.11729/syltlx20220114
Citation: SONG J H, YAO S B, CHEN D W, et al. Mitigation of micro-pressure wave at high-speed maglev tunnel exit by resonant cavity structure[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 1-8. DOI: 10.11729/syltlx20220114

Mitigation of micro-pressure wave at high-speed maglev tunnel exit by resonant cavity structure

More Information
  • Received Date: October 31, 2022
  • Revised Date: March 19, 2023
  • Accepted Date: March 22, 2023
  • During the passage of the high-speed maglev train through the tunnel, the air flow in front is compressed due to the limitation of annular space formed by the inner wall of the tunnel and the surface of the car body, forming an initial compression wave. The initial compression wave propagates to the tunnel portal at the local sound speed, and some of it radiates outward to form a micro-pressure wave, which seriously affects the tunnel portal environment. This problem is even more pronounced when high-speed maglev trains reach speeds of 600 km/h. Therefore, a tunnel with a resonant cavity structure is proposed, and the three-dimensional, unsteady, compressible N–S equation and SST kω turbulence model are used to study the aerodynamic effect mitigation characteristics of the maglev train passing through the tunnel at high speed. The simulation comparison and dynamic model test verification of different resonator schemes are carried out. The results show that the resonant cavity structure installed in the redundant space in the tunnel can dissipate the compressed wave energy, reduce the rate of pressure change of the compression wave, and have a significant slowing effect on the micro-pressure wave at the tunnel opening. Compared with the existing tunnel, the resonator structure has a micro-pressure wave mitigation effect of 41.87% and 40.05% at 20 m and 50 m to the tunnel portal, respectively. The micro-pressure wave mitigation effect is linearly related to the number of resonators in the tunnel. The results of the moving model test show that the slowdown effect of the micro-pressure wave is positively correlated with the operating speed.
  • [1]
    田红旗. 列车空气动力学[M]. 北京: 中国铁道出版社, 2007.

    TIAN H Q. Train aerodynamics[M]. Beijing: China Railway Publishing House, 2007.
    [2]
    杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45(1): 217–460. DOI: 10.6052/1000-0992-14-002

    YANG G W, WEI Y J, ZHAO G L, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45(1): 217–460. doi: 10.6052/1000-0992-14-002
    [3]
    马伟斌, 张千里, 刘艳青. 中国高速铁路隧道气动效应研究进展[J]. 交通运输工程学报, 2012, 12(4): 25–32. DOI: 10.19818/j.cnki.1671-1637.2012.04.004

    MA W B, ZHANG Q L, LIU Y Q. Study evolvement of high-speed railway tunnel aerodynamic effect in China[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 25–32. doi: 10.19818/j.cnki.1671-1637.2012.04.004
    [4]
    宋军浩, 郭迪龙, 杨国伟, 等. 高速列车隧道通过中的气动效应动模型实验研究[J]. 实验流体力学, 2017, 31(5): 39–45. DOI: 10.11729/syltlx20170002

    SONG J H, GUO D L, YANG G W, et al. Experimental investigation on the aerodynamics of tunnel-passing for high speed train with a moving model rig[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 39–45. doi: 10.11729/syltlx20170002
    [5]
    向新桃. 高速铁路隧道压力波数值模拟研究[D]. 上海: 上海交通大学, 2016.

    XIANG X T. Numerical investigations on the pressure waves generated by a high-speed train passing through a tunnel[J]. Shanghai: Shanghai Jiao Tong University, 2016. doi: 10.27307/d.cnki.gsjtu.2016.000147
    [6]
    郭易, 单东日, 郭迪龙, 等. 高速列车隧道初始压缩波的动模型实验研究[J]. 力学与实践, 2018, 40(5): 495–502. DOI: 10.6052/1000-0879-18-120

    GUO Y, SHAN D R, GUO D L, et al. Moving model analysis of the initial compression wave in tunnel for high-speed trains[J]. Mechanics in Engineering, 2018, 40(5): 495–502. doi: 10.6052/1000-0879-18-120
    [7]
    SAITO S, FUKUDA T. Design of a tunnel entrance hood for high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104375. doi: 10.1016/j.jweia.2020.104375
    [8]
    陶伟明. 高速铁路隧道洞口微气压波减缓措施效果研究[J]. 铁道工程学报, 2020, 37(8): 65–70. DOI: 10.3969/j.issn.1006-2106.2020.08.013

    TAO W M. Research on the alleviation effects of micro pressure wave countermeasures at the high speed railway tunnel portal[J]. Journal of Railway Engineering Society, 2020, 37(8): 65–70. doi: 10.3969/j.issn.1006-2106.2020.08.013
    [9]
    王田天, 胡冲, 龚彦峰, 等. 扩大斜切式缓冲结构对时速400 km铁路隧道口微气压波缓解研究[J]. 空气动力学学报, 2021, 39(5): 151–161. DOI: 10.7638/kqdlxxb-2021.0101

    WANG T T, HU C, GONG Y F, et al. Mitigation of micro-pressure wave at 400 km/h railway tunnel exit by oblique enlarged tunnel-hood[J]. Acta Aerodynamica Sinica, 2021, 39(5): 151–161. doi: 10.7638/kqdlxxb-2021.0101
    [10]
    史宪明, 吴剑, 冷希乔, 等. 补强套衬对高速铁路隧道洞口微气压波的影响[J]. 铁道建筑, 2017, 57(10): 53–55, 59. DOI: 10.3969/j.issn.1003-1995.2017.10.14

    SHI X M, WU J, LENG X Q, et al. Influence of added lining on micro pressure wave of high speed railway tunnel portals[J]. Railway Engineering, 2017, 57(10): 53–55, 59. doi: 10.3969/j.issn.1003-1995.2017.10.14
    [11]
    张童童, 闫亚光, 赵志超, 等. 高铁隧道内阶梯型缓冲结构气动效应分析[J]. 太原理工大学学报, 2022, 53(4): 779–785. DOI: 10.16355/j.cnki.issn1007-9432tyut.2022.04.025

    ZHANG T T, YAN Y G, ZHAO Z C, et al. Analysis of aerodynamic effects of the inter-stepwise buffer structure in high-speed railway tunnel[J]. Journal of Taiyuan University of Technology, 2022, 53(4): 779–785. doi: 10.16355/j.cnki.issn1007-9432tyut.2022.04.025
    [12]
    闫亚光, 杨庆山, 骆建军. 基于气动声学理论的喇叭型隧道缓冲结构优化[J]. 西南交通大学学报, 2016, 51(5): 832–839. DOI: 10.3969/j.issn.0258-2724.2016.05.003

    YAN Y G, YANG Q S, LUO J J. Optimizing flared hood of tunnel based on aeroacoustics[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 832–839. doi: 10.3969/j.issn.0258-2724.2016.05.003
    [13]
    李文辉, 刘堂红, 周苗苗, 等. 变截面隧道与典型缓冲结构气动效应缓解效果对比分析[J]. 中南大学学报(自然科学版), 2022, 53(5): 1572–1581. DOI: 10.11817/j.issn.1672-7207.2022.05.003

    LI W H, LIU T H, ZHOU M M, et al. Comparative analysis on aerodynamic mitigation effects between tunnels with variable cross-section and typical tunnel hoods[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1572–1581. doi: 10.11817/j.issn.1672-7207.2022.05.003
    [14]
    梅元贵, 李绵辉, 胡啸, 等. 时速600 公里磁浮列车隧道初始压缩波洞内传播特征和洞口微气压波特征[J]. 交通运输工程学报, 2021, 21(4): 150–162. DOI: 10.19818/j.cnki.1671-1637.2021.04.011

    MEI Y G, LI M H, HU X, et al. Propagation characteristics of initial compression wave in cave and portal micro-pressure waves characteristics when 600 km·h-1 maglev train entering tunnels[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 150–162. doi: 10.19818/j.cnki.1671-1637.2021.04.011
    [15]
    张洁, 王雨舸, 韩帅, 等. 缓冲结构长度对600 km/h磁浮列车通过隧道时的压力波特性影响分析[J]. 中南大学学报(自然科学版), 2022, 53(5): 1668–1678. DOI: 10.11817/j.issn.1672-7207.2022.05.012

    ZHANG J, WANG Y G, HAN S, et al. Influence of hood length on pressure wave characteristics induced by 600 km/h maglev train passing through tunnel[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1668–1678. doi: 10.11817/j.issn.1672-7207.2022.05.012
    [16]
    阮登芳. 共振式进气消声器设计理论及其应用研究[D]. 重庆: 重庆大学, 2005.

    RUAN D F. The design theory and application on the resonant intake silencer[D]. Chongqing: Chongqing Univer-sity, 2005.
    [17]
    TEBBUTT J A, VAHDATI M, CAROLAN D, et al. Numerical investigation on an array of Helmholtz resonators for the reduction of micro-pressure waves in modern and future high-speed rail tunnel systems[J]. Journal of Sound and Vibration, 2017, 400: 606–625. doi: 10.1016/j.jsv.2017.04.022
    [18]
    LOMBARD B, MERCIER J. Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators[J]. Journal of Computational Physics, 2014, 259: 421–443. doi: 10.1016/j.jcp.2013.11.036
    [19]
    王慕之, 梅元贵, 贾永兴. 重叠网格法应用于模拟高速列车隧道气动效应[J]. 应用力学学报, 2017, 34(3): 589–595, 618.

    WANG M Z, MEI Y G, JIA Y X. Simulation of aerodynamic effects generated by a high-speed train passing through a tunnel with overset grid method[J]. Chinese Journal of Applied Mechanics, 2017, 34(3): 589–595, 618.
    [20]
    任魁山. 时速600 公里磁浮铁路隧道洞口缓冲结构气动效应初步研究[D]. 兰州: 兰州交通大学, 2021.

    REN K S. Preliminary study on aerodynamic effect of hood structure at the entrance of maglev railway tunnel with speed of 600 km/h[D]. Lanzhou: Lanzhou Jiaotong University, 2021. doi: 10.27205/d.cnki.gltec.2021.001300
    [21]
    黄莎, 李志伟, 杨明智, 等. 高速磁浮列车通过隧道群时的压力波特性[J]. 中南大学学报(自然科学版), 2022, 53(5): 1770–1781. DOI: 10.11817/j.issn.1672-7207.2022.05.022

    HUANG S, LI Z W, YANG M Z, et al. Pressure wave characteristics of high-speed maglev train passing through tunnel groups[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1770–1781. doi: 10.11817/j.issn.1672-7207.2022.05.022
  • Related Articles

    [1]ZHU Dongyu, FENG Qiang, Han Xiaotao, Yang Ximing, Cui Xiaochun, Yuan Li. Researches on a large natural moveable icing wind tunnel and test methods[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 52-61. DOI: 10.11729/syltlx20210100
    [2]GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, YANG Shengke, LIN Wei. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. DOI: 10.11729/syltlx20190113
    [3]ZHU Xinxin, LONG Yongsheng, SHI Youan, YANG Qingtao, ZHOU Ping, ZHAO Shunhong. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 87-93. DOI: 10.11729/syltlx20190062
    [4]Zhang Hui, Fan Litao. Correlation analysis of large low speed wind tunnel test on CHN-T1 calibration model[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 106-111. DOI: 10.11729/syltlx20180046
    [5]Gao Guochi, Li Baoliang, Ding Li, Wang Zixu, Ni Zhangsong. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 95-101. DOI: 10.11729/syltlx20180064
    [6]Wang Zixu, Shen Hao, Guo Long, Guo Xiangdong, Ni Zhangsong. Cloud calibration method of 3m×2m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67. DOI: 10.11729/syltlx20170163
    [7]Zhou Feng, Feng Lijuan, Xu Chaojun, Zhao Keliang, Han Zhirong. Determination and verification of critical ice shape for the certification of civil aircraft[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 8-13. DOI: 10.11729/syltlx20160019
    [8]Shen Chen, Yang Zhigang. Numerical methods exploration and experimental validation of Ahmed model with consideration of fluid-solid-interaction effect[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 37-42. DOI: 10.11729/syltlx20130017
    [9]YUAN Hong-gang, YANG Yong-dong, ZHANG Gui-chuan, HUANG Ming-qi. Improving techniques and validating of rotor and fuselage compound model test stand[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4): 87-90. DOI: 10.3969/j.issn.1672-9897.2012.04.018
    [10]GUO Shan-guang, LIU Jun, JIN Liang, LUO Shi-bin. Numerical simulation and experiment validation on shock oscillations of inner flow path of hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 7-11. DOI: 10.3969/j.issn.1672-9897.2012.01.002
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close