Citation: | CHENG J H, GUO Y, GUO D L, et al. Slipstream at the tunnel exit induced by a high-speed maglev train passing through a tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 53-63. DOI: 10.11729/syltlx20220110 |
[1] |
任魁山, 李奎, 蒋尧, 等. 中速磁浮列车双线隧道初始压缩波特征的数值模拟研究[J]. 机车电传动, 2020(6): 51–55. DOI: 10.13890/j.issn.1000-128x.2020.06.011
REN K S, LI K, JIANG Y, et al. Numerical simulation of initial compression wave characteristics in double track tunnel of medium speed maglev train[J]. Electric Drive for Locomotives, 2020(6): 51–55. doi: 10.13890/j.issn.1000-128x.2020.06.011
|
[2] |
BELL J R, BURTON D, THOMPSON M C, et al. A wind-tunnel methodology for assessing the slipstream of high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 166: 1–19. doi: 10.1016/j.jweia.2017.03.012
|
[3] |
POPE C W. Effective management of risk from slipstream effects at trackside and platforms[R]. Rail Safety and Standards Board-T425 Report, 2007.
|
[4] |
STERLING M, BAKER C J, JORDAN S C, et al. A study of the slipstreams of high-speed passenger trains and freight trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(2): 177–193. doi: 10.1243/09544097JRRT133
|
[5] |
FLYNN D, HEMIDA H, BAKER C, et al. On the effect of crosswinds on the slipstream of a freight train and associated effects[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 156: 14–28. doi: 10.1016/j.jweia.2016.07.001
|
[6] |
熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177–198. DOI: 10.19818/j.cnki.1671-1637.2021.01.008
XIONG J Y, DENG Z G. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008
|
[7] |
林一平. 我国磁浮列车研制取得重大进展[J]. 交通与运输, 2017, 33(3): 50–53. doi: 10.3969/j.issn.1671-3400.2017.03.020
|
[8] |
董婷婷. 高速列车隧道气动性能分析[D]. 成都: 西南交通大学, 2013.
DONG T T. Study on aerodynamic performance of high-speed trains in the tunnel[D]. Chengdu: Southwest Jiaotong University, 2013. doi: 10.7666/d.Y2575369
|
[9] |
李炎, 高孟理, 周鸣镝, 等. 铁路隧道列车活塞风的理论研究与计算方法的探讨[J]. 铁道学报, 2010, 32(6): 140–145. DOI: 10.3969/j.issn.1001-8360.2010.06.023
LI Y, GAO M L, ZHOU M D, et al. Theoretical study and calculation method of train piston wind in railway tunnels[J]. Journal of the China Railway Society, 2010, 32(6): 140–145. doi: 10.3969/j.issn.1001-8360.2010.06.023
|
[10] |
HOWE M S. Review of the theory of the compression wave generated when a high-speed train enters a tunnel[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 1999, 213(2): 89–104. doi: 10.1243/0954409991531056
|
[11] |
顾红生, 赵毅山. 磁悬浮列车在隧道内影响活塞风速的因素[J]. 同济大学学报: 自然科学版, 2003, 31(3): 324–328. DOI: 10.3321/j.issn:0253-374X.2003.03.016
GU H S, ZHAO Y S. Effects on piston wind velocity of maglev in tunnel[J]. Journal of Tongji University: Natural Science, 2003, 31(3): 324–328. doi: 10.3321/j.issn:0253-374X.2003.03.016
|
[12] |
余南阳. 高速铁路隧道压力波数值模拟和模型试验研究[D]. 成都: 西南交通大学, 2004.
YU N Y. A study on numerical simulation and model experiment of the pressure waves of the high-speed trains through tunnels[D]. Chengdu: Southwest Jiaotong Univer-sity, 2004.
|
[13] |
SAKUMA Y, SUZUKI M, IDO A, et al. Measurement of air velocity and pressure distributions around high-speed trains on board and on the ground (boundary problem, technical session)[J]. The Proceedings of International Symposium on Seed-Up and Service Technology for Railway and Maglev Systems:STECH, 2009, 2009: 360769–1. doi: 10.1299/jsmestech.2009._360769-1_
|
[14] |
刘峰, 姚松, 刘堂红, 等. 高速铁路隧道壁面气动压力实车试验分析[J]. 浙江大学学报: 工学版, 2016, 50(10): 2018–2024. DOI: 10.3785/j.issn.1008-973X.2016.10.024
LIU F, YAO S, LIU T H, et al. Analysis on aerodynamic pressure of tunnel wall of high-speed railways by full-scale train test[J]. Journal of Zhejiang University: Engineering Science, 2016, 50(10): 2018–2024. doi: 10.3785/j.issn.1008-973X.2016.10.024
|
[15] |
方雨菲, 马伟斌, 程爱君, 等. 隧道附属设施气动效应分析[J]. 铁道建筑, 2022, 62(4): 102–106. DOI: 10.3969/j.issn.1003‐1995.2022.04.25
FANG Y F, MA W B, CHENG A J, et al. Analysis on aerodynamic effect of tunnel auxiliary facilities[J]. Railway Engineering, 2022, 62(4): 102–106. doi: 10.3969/j.issn.1003‐1995.2022.04.25
|
[16] |
刘堂红, 田红旗, 金学松. 隧道空气动力学实车试验研究[J]. 空气动力学学报, 2008, 26(1): 42–46. DOI: 10.3969/j.issn.0258-1825.2008.01.008
LIU T H, TIAN H Q, JIN X S. Experimental study of full-scale train on aerodynamics in tunnel[J]. Acta Aerodyna-mica Sinica, 2008, 26(1): 42–46. doi: 10.3969/j.issn.0258-1825.2008.01.008
|
[17] |
梅元贵. 高速铁路隧道压力波数值模拟研究[D]. 成都: 西南交通大学, 1997.
MEI Y G. Numerical simulation of pressure wave in high-speed railway tunnel[D]. Chengdu: Southwest Jiaotong Uni-versity, 1997.
|
[18] |
牛纪强. 高速列车通过隧道时产生的列车风研究[J]. 铁道科学与工程学报, 2015, 12(6): 1268–1276. DOI: 10.3969/j.issn.1672-7029.2015.06.002
NIU J Q. Research on gusts caused by high-speed trains passing through tunnel[J]. Journal of Railway Science and Engineering, 2015, 12(6): 1268–1276. doi: 10.3969/j.issn.1672-7029.2015.06.002
|
[19] |
王磊, 骆建军, 李飞龙. 高速列车过双线隧道气动效应及列车风特性[J]. 哈尔滨工业大学学报, 2021, 53(9): 43–52. DOI: 10.11918/202011011
WANG L, LUO J J, LI F L. Aerodynamic effects and train wind characteristics of high-speed train passing through double-track tunnel[J]. Journal of Harbin Institute of Tech-nology, 2021, 53(9): 43–52. doi: 10.11918/202011011
|
[20] |
王磊, 骆建军, 李飞龙, 等. 高速铁路双线隧道内列车风分布及流场特性[J]. 中南大学学报: 自然科学版, 2021, 52(4): 1346–1357. DOI: 10.11817/j.issn.1672-7207.2021.04.031
WANG L, LUO J J, LI F L, et al. Train-induced wind distribution and flow field characteristics in high-speed railway double-track tunnel[J]. Journal of Central South University: Science and Technology, 2021, 52(4): 1346–1357. doi: 10.11817/j.issn.1672-7207.2021.04.031
|
[21] |
朴荣焕, 张继业, 李田. 时速100公里级地铁车辆通过隧道时引起的活塞风仿真研究[J]. 机械, 2021, 48(11): 41–48. DOI: 10.3969/j.issn.1006-0316.2021.11.006
PIAO R H, ZHANG J Y, LI T. Simulation study on piston wind caused by 100 km/h metro vehicles passing through tunnels[J]. Machinery, 2021, 48(11): 41–48. doi: 10.3969/j.issn.1006-0316.2021.11.006
|
[22] |
管鸿浩, 龚彦峰, 踪敬良, 等. 高速列车单列通过时双线隧道内列车风分布规律研究[J]. 铁道标准设计, 2022, 66(6): 83–89. DOI: 10.13238/j.issn.1004-2954.202105160002
GUAN H H, GONG Y F, ZONG J L, et al. Study on the slipstream distribution by a single train running through a double-track tunnel[J]. Railway Standard Design, 2022, 66(6): 83–89. doi: 10.13238/j.issn.1004-2954.202105160002
|
[23] |
YAO S B, SUN Z X, GUO D L, et al. Numerical study on wake characteristics of high-speed trains[J]. Acta Mechanica Sinica, 2013, 29(6): 811–822. doi: 10.1007/s10409-013-0077-3
|
[24] |
柳润东, 毛军, 郗艳红. 高速铁路风障在横风与列车风耦合作用下的气动特性研究[J]. 振动与冲击, 2018, 37(3): 153–159,166. DOI: 10.13465/j.cnki.jvs.2018.03.025
LIU R D, MAO J, XI Y H. Aerodynamic load features of windbreaks of high speed railway under coupled action of cross wind and high speed train wind[J]. Journal of Vibration and Shock, 2018, 37(3): 153–159,166. doi: 10.13465/j.cnki.jvs.2018.03.025
|
[25] |
European Committee for Standardization. BS EN 14067-5: 2006+A1: 2010 Railway applications - Aerodynamics - Part 5: Requirements and test procedures for aerodynamics in tunnels[S]. Brussels: CEN, 2010.
|
[26] |
BELL J R, BURTON D, THOMPSON M C, et al. Moving model analysis of the slipstream and wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136: 127–137. doi: 10.1016/j.jweia.2014.09.007
|
[1] | DONG Lin, WEN Guoan, LEI Ziwei, RINOSHIKA Akira. PIV experimental study on vortex structures induced by free autorotation fall of a samaras[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 54-60. DOI: 10.11729/syltlx20200004 |
[2] | FU Hao, HE Chuangxin, LIU Yingzheng. PIV experimental study on flow characteristics of a low swirl number precessing jet[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 39-45. DOI: 10.11729/syltlx20200129 |
[3] | WANG Fujun, WANG Hongping, GAO Qi, WEI Runjie, LIU Yanpeng. PIV experimental study on fish swimming vortex structure[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 20-28. DOI: 10.11729/syltlx20200039 |
[4] | SHEN Feng, YAN Chengjin, LI Mengqi, JI Deru, LIU Zhaomiao. Micro-PIV study on flow field characteristics of droplets in a microcavity[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 67-72. DOI: 10.11729/syltlx20190117 |
[5] | Zhang Jun, Bai Yaqiang, Zhai Shucheng, Zhang Guoping, Xu Lianghao. PIV measurement on streamwise vortex generated by undulating fins[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 15-21. DOI: 10.11729/syltlx20170017 |
[6] | Liu Ping'an, Lin Yongfeng, Chen Yaofeng, Yuan Mingchuan. Blade tip vortex measurements of a hovering rotor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 39-44. DOI: 10.11729/syltlx20160186 |
[7] | Wu Jinhua, Sun Haisheng, Shen Zhihong, Jiang Yubiao. 旋转流场下的振荡动导数试验技术研究[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 54-58. DOI: 10.11729/syltlx20130057 |
[8] | WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008 |
[9] | LI Hao, LIN Ming, ZHANG Yu-shan, SHEN Ji-kui, CHEN Chun-de. Study on centeral-dump combustor by PIV[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 45-49,59. DOI: 10.3969/j.issn.1672-9897.2011.04.009 |
[10] | ZHANG Xiao-di, JIANG Jia-li, JIA Yuan-sheng, MA Hong-zhi, XIAO Ya-ke. Measurements of cylinder's wake by PIV[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 74-78. DOI: 10.3969/j.issn.1672-9897.2005.02.015 |
1. |
张怀宝,王靖宇,Bailey Sean C.C.,王光学,邓小刚. 低雷诺数壁面约束流动皮托管测速误差分析与校正. 国防科技大学学报. 2018(03): 37-41 .
![]() |