Citation: | SHEN Feng, YAN Chengjin, LI Mengqi, JI Deru, LIU Zhaomiao. Micro-PIV study on flow field characteristics of droplets in a microcavity[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 67-72. DOI: 10.11729/syltlx20190117 |
[1] |
RANE T D, ZEC H C, PULEO C, et al. Droplet microfluidics for amplification-free genetic detection of single cells[J]. Lab on a Chip, 2012, 12(18):3341-3347. DOI: 10.1039/c2lc40537g
|
[2] |
MAZUTIS L, GILBERT J, UNG W L, et al. Single-cell analysis and sorting using droplet-based microfluidics[J]. Nature Protocols, 2013, 8(5):870-891. DOI: 10.1038/nprot.2013.046
|
[3] |
HE M, EDGAR J S, JEFFRIES G D M, et al. Selective encapsulation of single cells and subcellular organelles into picoliter-and femtoliter-volume droplets[J]. Analytical Chemistry, 2005, 77(6):1539-1544. DOI: 10.1021/ac0480850
|
[4] |
张凯, 胡坪, 梁琼麟, 等.微流控芯片中微液滴的操控及其应用[J].分析化学, 2008, 36(4):556-562. DOI: 10.3321/j.issn:0253-3820.2008.04.029
ZHANG K, HU P, LIANG Q L, et al. Control and application of microdroplet in microfluidic chip[J]. Chinese Journal of Analytical Chemistry, 2008, 36(4):556-562. DOI: 10.3321/j.issn:0253-3820.2008.04.029
|
[5] |
CLAUSELL-TORMOS J, LIEBER D, BARET J C, et al. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms[J]. Chemistry and Biology, 2008, 15(5):427-437. DOI: 10.1016/j.chembiol.2008.04.004
|
[6] |
PIAO Y, HAN D J, AZAD M R, et al. Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets[J]. Biosensors and Bioelectronics, 2015, 65:220-225. DOI: 10.1016/j.bios.2014.10.032
|
[7] |
BROUZES E, MEDKOVA M, SAVENELLI N, et al. Droplet microfluidic technology for single-cell high-throughput screening[J]. PNAS, 2009, 106(34):14195-14200. DOI: 10.1073/pnas.0903542106
|
[8] |
LEE D, BAE C, HAN J, et al. In situ analysis of heterogeneity in the lipid content of single green microalgae in alginate hydrogel microcapsules[J]. Analytical Chemistry, 2013, 85(18):8749-8756. DOI: 10.1021/ac401836j
|
[9] |
PAN J, STEPHENSON A L, KAZAMIA E, et al. Quantitative tracking of the growth of individual algal cells in microdroplet compartments[J]. Integrative Biology, 2011, 3(10):1043-1051. DOI: 10.1039/c1ib00033k
|
[10] |
LIU K, PITCHIMANI R, DANG D, et al. Cell culture chip using low-shear mass transport[J]. Langmuir, 2008, 24(11):5955-5960. DOI: 10.1021/la8003917
|
[11] |
YU L, CHEN M, CHEUNG K. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing[J]. Lab on a Chip, 2010, 10(18):2424-32. DOI: 10.1039/c004590j
|
[12] |
SHEN F, XIAO P, LIU Z M. Microparticle image velocimetry (μPIV) study of microcavity flow at low Reynolds number[J]. Microfluidics and Nanofluidics, 2015, 19(2):403-417. DOI: 10.1007/s10404-015-1575-3
|
[13] |
YEW A G, PINERO D, HSIEH A H, et al. Low Peclet number mass and momentum transport in microcavities[J]. Appl Phys Lett, 2013, 102:084108. DOI: 10.1063/1.4794058
|
[14] |
LIU K, TIAN Y, BURROWS S M, et al. Mapping vortex-like hydrodynamic flow in microfluidic networks using fluorescence correlation spectroscopy[J]. Anal Chim Acta, 2009, 651:85-90. DOI: 10.1016/j.aca.2009.08.007
|
[15] |
LIU Z M, LI M Q, PANG Y, et al. Flow characteristics inside droplets moving in a curved microchannel with rectangular section[J]. Physics of Fluids, 2019, 30:022004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=35c9a2aa237b8a35c983708e3dfb0ad9
|
[16] |
HUR S C, MACH A J, DI C D. High-throughput size-based rare cell enrichment using microscale vortices[J]. Biomicrofluidics, 2011, 5(2):341. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3171489
|
[17] |
MACH A J, KIM J H, ARSHI A, et al. Automated cellular sample preparation using a centrifuge-on-a-chip[J]. Lab Chip, 2011, 11(17):2827. DOI: 10.1039/c1lc20330d
|
[18] |
SHEN F, XU M, ZHOU B, et al. Effects of geometry factors on microvortices evolution in confined square microcavities[J]. Microfluidics and Nanofluidics, 2018, 22(4):36. DOI: 10.1007/s10404-018-2056-2
|
[19] |
HARDY B S, UECHI K, ZHEN J, et al. The deformation of flexible PDMS microchannels under a pressure driven flow[J]. Lab on a Chip, 2009, 9(7):935-938. DOI: 10.1039/B813061B
|
[20] |
SHEN F, LI X, LI P C H. Study of flow behaviors on single-cell manipulation and shear stress reduction in microfluidic chips using computational fluid dynamics simulations[J]. Biomicrofluidics, 2014, 8(1):014109. DOI: 10.1063/1.4866358
|
[1] | HE Xuzhao, ZHOU Zheng, ZHANG Juntao, HE Yuanyuan, WU Yingchuan. Mass flux measurement and comparison study of simulation and experiment on curved cone waverider forebody inlet[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 18-23. DOI: 10.11729/syltlx20190095 |
[2] | ZUO Chenglin, MA Jun, YUE Tingrui, SONG Jin, WANG Xunnian. Displacement and deformation measurements of helicopter rotor blades based on binocular stereo vision[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 87-95. DOI: 10.11729/syltlx20190071 |
[3] | Tao Bo, Wang Sheng, Hu Zhiyun, Zhang Lirong, Zhang Zhenrong, Ye Xisheng. TDLAS 技术二次谐波法测量发动机温度[J]. Journal of Experiments in Fluid Mechanics, 2015, (2): 68-72. DOI: 10.11729/syltlx20140053 |
[4] | Wang Huilun, Xie Yajun, Jiang Yajun. A new method for improving the measurement sensitivity of wind tunnel balance[J]. Journal of Experiments in Fluid Mechanics, 2015, (1): 83-86,91. DOI: 10.11729/syltlx20140003 |
[5] | LIANG Lei, DUAN Pi-xuan, LIU Li-ping, WANG Dan. The galloping locus study with the linear CCD measurement system[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(5): 93-97. DOI: 10.3969/j.issn.1672-9897.2012.05.020 |
[6] | WANG Ai-ling, ZHANG Zheng-yu, HUANG Shi-jie, WANG Shui-liang, ZHAO Tao. Camera calibration of model displacement videogrammetric measurement in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(5): 74-78. DOI: 10.3969/j.issn.1672-9897.2012.05.016 |
[7] | ZHANG Zheng-yu, YU Bo, LUO Chuan, SUN Yan, ZHOU Gui-yu, HUANG Shi-jie. Precision investigation on model displacement videogrammetric measurement in 2.4m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 79-82. DOI: 10.3969/j.issn.1672-9897.2011.04.015 |
[8] | ZHOU Shu-guang, WEN Yue-hang, JIN Qi-gang. A summary of optics model displacement measuring technique application in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(2): 94-99. DOI: 10.3969/j.issn.1672-9897.2009.02.020 |
[9] | WANG Jin-yin. Problems involved in comparison of calibration of strain gage balance in ground coordinate system and body coordinate system[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 103-109. DOI: 10.3969/j.issn.1672-9897.2005.02.020 |
[10] | Measurement of the underwater acoustic field in water entry of blunt body[J]. Journal of Experiments in Fluid Mechanics, 2001, 15(2): 78-84. DOI: 10.3969/j.issn.1672-9897.2001.02.011 |
1. |
徐大川,阳玲,史煜,顾蕴松,任泽斌. 航空发动机在超声速引射系统中的应用分析. 国防科技大学学报. 2022(04): 125-133 .
![]() |