SHEN Feng, YAN Chengjin, LI Mengqi, JI Deru, LIU Zhaomiao. Micro-PIV study on flow field characteristics of droplets in a microcavity[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 67-72. DOI: 10.11729/syltlx20190117
Citation: SHEN Feng, YAN Chengjin, LI Mengqi, JI Deru, LIU Zhaomiao. Micro-PIV study on flow field characteristics of droplets in a microcavity[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 67-72. DOI: 10.11729/syltlx20190117

Micro-PIV study on flow field characteristics of droplets in a microcavity

More Information
  • Received Date: September 01, 2019
  • Revised Date: September 18, 2019
  • Droplets have become an important research content of microfluidics. In order to realize precise regulation of the droplets' microenvironment, droplets were generated and trapped in long rectangular microcavities in a microchannel, and the internal flow field characteristics were experimentally measured by using a micro-particle image velocimetry (Micro-PIV) system. The effects of the Reynolds number (Re) on the droplet morphology, internal flow velocity vector fields and the distributions of shear stress inside the trapped droplet have been investigated. The results show that at Re=11.1, a vortex structure appears inside the droplet. When Re=33.3, the flow rate at the center of the droplet reaches a maximum value of about 10 μm/s. However, when Re=44.4, the vortex structure disappears and the average flow rate decreases. Meanwhile, the droplet size decreases as the Re increases. Moreover, Re has no significant effect on the internal shear stress of the droplet, and the average value of the shear stress is extremely low (< 1.5×10-4 Pa).
  • [1]
    RANE T D, ZEC H C, PULEO C, et al. Droplet microfluidics for amplification-free genetic detection of single cells[J]. Lab on a Chip, 2012, 12(18):3341-3347. DOI: 10.1039/c2lc40537g
    [2]
    MAZUTIS L, GILBERT J, UNG W L, et al. Single-cell analysis and sorting using droplet-based microfluidics[J]. Nature Protocols, 2013, 8(5):870-891. DOI: 10.1038/nprot.2013.046
    [3]
    HE M, EDGAR J S, JEFFRIES G D M, et al. Selective encapsulation of single cells and subcellular organelles into picoliter-and femtoliter-volume droplets[J]. Analytical Chemistry, 2005, 77(6):1539-1544. DOI: 10.1021/ac0480850
    [4]
    张凯, 胡坪, 梁琼麟, 等.微流控芯片中微液滴的操控及其应用[J].分析化学, 2008, 36(4):556-562. DOI: 10.3321/j.issn:0253-3820.2008.04.029

    ZHANG K, HU P, LIANG Q L, et al. Control and application of microdroplet in microfluidic chip[J]. Chinese Journal of Analytical Chemistry, 2008, 36(4):556-562. DOI: 10.3321/j.issn:0253-3820.2008.04.029
    [5]
    CLAUSELL-TORMOS J, LIEBER D, BARET J C, et al. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms[J]. Chemistry and Biology, 2008, 15(5):427-437. DOI: 10.1016/j.chembiol.2008.04.004
    [6]
    PIAO Y, HAN D J, AZAD M R, et al. Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets[J]. Biosensors and Bioelectronics, 2015, 65:220-225. DOI: 10.1016/j.bios.2014.10.032
    [7]
    BROUZES E, MEDKOVA M, SAVENELLI N, et al. Droplet microfluidic technology for single-cell high-throughput screening[J]. PNAS, 2009, 106(34):14195-14200. DOI: 10.1073/pnas.0903542106
    [8]
    LEE D, BAE C, HAN J, et al. In situ analysis of heterogeneity in the lipid content of single green microalgae in alginate hydrogel microcapsules[J]. Analytical Chemistry, 2013, 85(18):8749-8756. DOI: 10.1021/ac401836j
    [9]
    PAN J, STEPHENSON A L, KAZAMIA E, et al. Quantitative tracking of the growth of individual algal cells in microdroplet compartments[J]. Integrative Biology, 2011, 3(10):1043-1051. DOI: 10.1039/c1ib00033k
    [10]
    LIU K, PITCHIMANI R, DANG D, et al. Cell culture chip using low-shear mass transport[J]. Langmuir, 2008, 24(11):5955-5960. DOI: 10.1021/la8003917
    [11]
    YU L, CHEN M, CHEUNG K. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing[J]. Lab on a Chip, 2010, 10(18):2424-32. DOI: 10.1039/c004590j
    [12]
    SHEN F, XIAO P, LIU Z M. Microparticle image velocimetry (μPIV) study of microcavity flow at low Reynolds number[J]. Microfluidics and Nanofluidics, 2015, 19(2):403-417. DOI: 10.1007/s10404-015-1575-3
    [13]
    YEW A G, PINERO D, HSIEH A H, et al. Low Peclet number mass and momentum transport in microcavities[J]. Appl Phys Lett, 2013, 102:084108. DOI: 10.1063/1.4794058
    [14]
    LIU K, TIAN Y, BURROWS S M, et al. Mapping vortex-like hydrodynamic flow in microfluidic networks using fluorescence correlation spectroscopy[J]. Anal Chim Acta, 2009, 651:85-90. DOI: 10.1016/j.aca.2009.08.007
    [15]
    LIU Z M, LI M Q, PANG Y, et al. Flow characteristics inside droplets moving in a curved microchannel with rectangular section[J]. Physics of Fluids, 2019, 30:022004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=35c9a2aa237b8a35c983708e3dfb0ad9
    [16]
    HUR S C, MACH A J, DI C D. High-throughput size-based rare cell enrichment using microscale vortices[J]. Biomicrofluidics, 2011, 5(2):341. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3171489
    [17]
    MACH A J, KIM J H, ARSHI A, et al. Automated cellular sample preparation using a centrifuge-on-a-chip[J]. Lab Chip, 2011, 11(17):2827. DOI: 10.1039/c1lc20330d
    [18]
    SHEN F, XU M, ZHOU B, et al. Effects of geometry factors on microvortices evolution in confined square microcavities[J]. Microfluidics and Nanofluidics, 2018, 22(4):36. DOI: 10.1007/s10404-018-2056-2
    [19]
    HARDY B S, UECHI K, ZHEN J, et al. The deformation of flexible PDMS microchannels under a pressure driven flow[J]. Lab on a Chip, 2009, 9(7):935-938. DOI: 10.1039/B813061B
    [20]
    SHEN F, LI X, LI P C H. Study of flow behaviors on single-cell manipulation and shear stress reduction in microfluidic chips using computational fluid dynamics simulations[J]. Biomicrofluidics, 2014, 8(1):014109. DOI: 10.1063/1.4866358
  • Related Articles

    [1]HE Xuzhao, ZHOU Zheng, ZHANG Juntao, HE Yuanyuan, WU Yingchuan. Mass flux measurement and comparison study of simulation and experiment on curved cone waverider forebody inlet[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 18-23. DOI: 10.11729/syltlx20190095
    [2]ZUO Chenglin, MA Jun, YUE Tingrui, SONG Jin, WANG Xunnian. Displacement and deformation measurements of helicopter rotor blades based on binocular stereo vision[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 87-95. DOI: 10.11729/syltlx20190071
    [3]Tao Bo, Wang Sheng, Hu Zhiyun, Zhang Lirong, Zhang Zhenrong, Ye Xisheng. TDLAS 技术二次谐波法测量发动机温度[J]. Journal of Experiments in Fluid Mechanics, 2015, (2): 68-72. DOI: 10.11729/syltlx20140053
    [4]Wang Huilun, Xie Yajun, Jiang Yajun. A new method for improving the measurement sensitivity of wind tunnel balance[J]. Journal of Experiments in Fluid Mechanics, 2015, (1): 83-86,91. DOI: 10.11729/syltlx20140003
    [5]LIANG Lei, DUAN Pi-xuan, LIU Li-ping, WANG Dan. The galloping locus study with the linear CCD measurement system[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(5): 93-97. DOI: 10.3969/j.issn.1672-9897.2012.05.020
    [6]WANG Ai-ling, ZHANG Zheng-yu, HUANG Shi-jie, WANG Shui-liang, ZHAO Tao. Camera calibration of model displacement videogrammetric measurement in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(5): 74-78. DOI: 10.3969/j.issn.1672-9897.2012.05.016
    [7]ZHANG Zheng-yu, YU Bo, LUO Chuan, SUN Yan, ZHOU Gui-yu, HUANG Shi-jie. Precision investigation on model displacement videogrammetric measurement in 2.4m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 79-82. DOI: 10.3969/j.issn.1672-9897.2011.04.015
    [8]ZHOU Shu-guang, WEN Yue-hang, JIN Qi-gang. A summary of optics model displacement measuring technique application in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(2): 94-99. DOI: 10.3969/j.issn.1672-9897.2009.02.020
    [9]WANG Jin-yin. Problems involved in comparison of calibration of strain gage balance in ground coordinate system and body coordinate system[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 103-109. DOI: 10.3969/j.issn.1672-9897.2005.02.020
    [10]Measurement of the underwater acoustic field in water entry of blunt body[J]. Journal of Experiments in Fluid Mechanics, 2001, 15(2): 78-84. DOI: 10.3969/j.issn.1672-9897.2001.02.011
  • Cited by

    Periodical cited type(1)

    1. 徐大川,阳玲,史煜,顾蕴松,任泽斌. 航空发动机在超声速引射系统中的应用分析. 国防科技大学学报. 2022(04): 125-133 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (264) PDF downloads (31) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close