Volume 37 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
ZHOU J, ZHANG J, CHEN Q, et al. Wind tunnel test technique of continuous varying Mach number for air-breathing vehicle[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 76-85 doi: 10.11729/syltlx20210189
Citation: ZHOU J, ZHANG J, CHEN Q, et al. Wind tunnel test technique of continuous varying Mach number for air-breathing vehicle[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 76-85 doi: 10.11729/syltlx20210189

Wind tunnel test technique of continuous varying Mach number for air-breathing vehicle

doi: 10.11729/syltlx20210189
  • Received Date: 2021-12-20
  • Accepted Date: 2022-01-20
  • Rev Recd Date: 2022-01-17
  • Available Online: 2022-11-15
  • Publish Date: 2023-12-30
  • To study the start/unstart phenomenon of the air-breathing vehicle inlet caused by acceleration or deceleration, which also bring the problem of aerodynamic mutation on vehicle, the test technique of continuous varying Mach number was performed in the 1.2 m supersonic wind tunnel based on the flow mechanism of the 2D wedge shock wave. By developing the shock wave generator system, continuous varying Mach number was realized successfully in one wind tunnel test process. And it has also been confirmed that the technical method can make Mach number vary simply and quickly with high quality and precision. Through the flow-field calibration, the quality of the instantaneous flow-field in variable Mach number region meets the standards of GJB eligibly, and thus the field can be used for force and pressure test compliantly. In addition, the test of inlet starting characteristics was carried out and the dynamic process and critical state from start to unstart were captured, which indicates that the test results agree with the numerical simulation accurately.
  • loading
  • [1]
    WALKER S, RODGERS F, PAULL A, et al. HyCAUSE flight test program[R]. AIAA-2008-2580, 2008.
    [2]
    VOLAND R, AUSLENDER A, SMART M, et al. CIAM/NASA Mach 6.5 scramjet flight and ground test[C]//Proc of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. 1999. doi: 10.2514/6.1999-4848
    [3]
    AGRAWAL R K, YUNIS M. A generalized mathematical model to estimate gas turbine starting characteristics[C]//Proceedings of ASME 1981 International Gas Turbine Conference and Products Show. 2015. doi: 10.1115/81-GT-202
    [4]
    赵丽凤, 王逊, 刘小兵, 等. 涡轮–冲压组合发动机模态过渡段性能模拟和概念探讨[J]. 工程热物理学报, 1999, 20(1): 9–12. doi: 10.3321/j.issn:0253-231X.1999.01.003

    ZHAO L F, WANG X, LIU X B, et al. Performance simulation and conceptual investigation of turbo ramjet engine in transition period[J]. Journal of Engineering Thermophysics, 1999, 20(1): 9–12. doi: 10.3321/j.issn:0253-231X.1999.01.003
    [5]
    WIETING A R. Exploratory study of transient upstart phenomena in a three-dimensional fixed-geometry scramjet engine[R]. NASA TND-8156, 1976.
    [6]
    SHIMURA T, MITANI T, SAKURANAKA N, et al. Load oscillations caused by unstart of hypersonic wind tunnels and engines[J]. Journal of Propulsion and Power, 1998, 14(3): 348–353. doi: 10.2514/2.5287
    [7]
    钟萍, 陈丽艳, 王颖. 国外高超声速技术焦点领域及相关设备改造综述[J]. 飞航导弹, 2011(10): 17–22. doi: 10.16338/j.issn.1009-1319.2011.10.013
    [8]
    KITAMURA E, MITANI T, SAKURANAKA N, et al. Variable nozzles for aerodynamic testing of scramjet engines[C]//Proc of the ICIASF 2005 Record International Congress on Instrumentation in Aerospace Simulation Facilities. 2005: 348-354. doi: 10.1109/ICIASF.2005.1569943
    [9]
    TICHENOR N, SEMPER M, BOWERSOX R, et al. Cali-bration of an actively controlled expansion hypersonic wind tunnel[C]//Proc of the 27th AIAA Aerodynamic Measure-ment Technology and Ground Testing Conference. 2010. doi: 10.2514/6.2010-4793
    [10]
    GARRARD D, SEELY J, ABEL L. An analysis of alterna-tives to provide a varying Mach number test capability at APTU[C]//Proc of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. 2006. doi: 10.2514/6.2006-8044
    [11]
    钟萍. 国外高超声速飞行加速地面模拟能力研究进展[J]. 飞航导弹, 2014(6): 10–15.
    [12]
    ERDMANN S F. A new economic flexible nozzle for superso-nic wind tunnels[J]. Journal of Aircraft, 1971, 8(1): 58–60. doi: 10.2514/3.44228
    [13]
    MACDERMOTT W N. The correction of flexible plate supersonic nozzle contours by influence methods[J]. Journal of the Aeronautical Sciences, 1955, 22(5): 289–296. doi: 10.2514/8.3337
    [14]
    MONTGOMERY P, GARRARD D. Test and evaluation of hypersonic aeropropulsion systems along flight trajectories in a time-varying flight environment[C]//Proc of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2005. doi: 10.2514/6.2005-3900
    [15]
    彭强, 邓小刚, 廖达雄, 等. 半柔壁喷管气动设计关键控制参数研究[J]. 空气动力学学报, 2011, 29(1): 39–46, 84. doi: 10.3969/j.issn.0258-1825.2011.01.007

    PENG Q, DENG X G, LIAO D X, et al. The primary parameters research on the aerodynamic designing of semi-flexible nozzle[J]. Acta Aerodynamica Sinica, 2011, 29(1): 39–46, 84. doi: 10.3969/j.issn.0258-1825.2011.01.007
    [16]
    熊波, 林学东, 杨洋, 等. 挠性壁喷管撑杆单位影响曲线相关性研究及其在2 m × 2 m超声速风洞中的应用[J]. 实验流体力学, 2013, 27(4): 88–91. doi: 10.3969/j.issn.1672-9897.2013.04.016

    XIONG B, LIN X D, YANG Y, et al. Jack's unit influence curve association study of the flexible plate nozzle and application in 2 m × 2 m supersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 88–91. doi: 10.3969/j.issn.1672-9897.2013.04.016
    [17]
    范志鹏, 徐惊雷, 吕郑, 等. 型面旋转变马赫数风洞喷管的优化设计[J]. 航空学报, 2014, 35(5): 1216–1225.

    FAN Z P, XU J L, LYU Z, et al. Optimization design of variable Mach number wind tunnel nozzle by rotating profile[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1216–1225.
    [18]
    齐伟呈, 徐惊雷, 范志鹏, 等. 马赫数2~4连续可调风洞数值模拟及静态标定试验[J]. 航空学报, 2017, 38(1): 120155.

    QI W C, XU J L, FAN Z P, et al. Numerical simulation and experimental calibration of continuously adjustable wind tunnel with Mach number 2 to 4[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 120155.
    [19]
    谢文忠, 葛严, 赵昊, 等. 一种高超声速进气道加速自起动的实验方法[J]. 航空动力学报, 2018, 33(6): 1475–1483.

    XIE W Z, GE Y, ZHAO H, et al. A test method for accelerating self-start of hypersonic inlets[J]. Journal of Aerospace Power, 2018, 33(6): 1475–1483.
    [20]
    赵昊, 谢旅荣, 郭荣伟, 等. 超声速进气道加速/减速过程起动/不起动现象研究[J]. 航空动力学报, 2015, 30(8): 1841–1852. doi: 10.13224/j.cnki.jasp.2015.08.007

    ZHAO H, XIE L R, GUO R W, et al. Study of start/unstart phenomenon of supersonic inlet in acceleration/deceleration process[J]. Journal of Aerospace Power, 2015, 30(8): 1841–1852. doi: 10.13224/j.cnki.jasp.2015.08.007
    [21]
    刘雄, 王翼, 梁剑寒. 二维高超声速进气道加速启动过程数值研究[J]. 推进技术, 2015, 36(3): 328–335.

    LIU X, WANG Y, LIANG J H. Numerical research on accelerating start process of 2-dimensional hypersonic inlet[J]. Journal of Propulsion Technology, 2015, 36(3): 328–335.
    [22]
    李祝飞, 高文智, 杨基明. 一种二元进气道起动特性的数值与实验考察[J]. 推进技术, 2016, 37(7): 1224–1232.

    LI Z F, GAO W Z, YANG J M. Numerical and experimental investigation for starting characteristics of a two-dimensional inlet[J]. Journal of Propulsion Technology, 2016, 37(7): 1224–1232.
    [23]
    WANG W X, GUO R W. Numerical study of unsteady starting characteristics of a hypersonic inlet[J]. Chinese Journal of Aeronautics, 2013, 26(3): 563–571. doi: 10.1016/j.cja.2013.04.018
    [24]
    张江, 董金刚, 蔡琛芳, 等. 冲压发动机进气道起动迟滞特性试验装置: 中国, CN104132811B[P]. 2016-08-24.

    ZHANG J, DONG J, CAI C, et al. Ramjet air inlet starting hysteresis characteristics test device: China CN104132811B[P]. 2016-08-24.
    [25]
    SHEN J M, DONG J G, LI R Q, et al. Integrated supersonic wind tunnel nozzle[J]. Chinese Journal of Aeronautics, 2019, 32(11): 2422–2432. doi: 10.1016/j.cja.2019.07.005
    [26]
    中国人民解放军总装备部. 低速风洞和高速风洞流场品质要求: GJB 1179A–2012[S]. 北京: 总装备部军标出版发行部, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)

    Article Metrics

    Article views (399) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return