MA L C,SHI Y J,HUANG B X,et al. Vacuum mode debugging and flow field performance calibration of large-scale hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022,36(1):96-102.. DOI: 10.11729/syltlx20210152
Citation: MA L C,SHI Y J,HUANG B X,et al. Vacuum mode debugging and flow field performance calibration of large-scale hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022,36(1):96-102.. DOI: 10.11729/syltlx20210152

Vacuum mode debugging and flow field performance calibration of large-scale hypersonic wind tunnel

More Information
  • Received Date: October 21, 2021
  • Revised Date: December 15, 2021
  • Accepted Date: December 21, 2021
  • Available Online: March 01, 2022
  • With the continuous increase of the flight altitude of advanced aircraft in the future, the requirements for wind tunnel test simulation ability are constantly increasing, such as the lower vacuum running ability. The conventional multistage ejection system can no longer fully meet the operation requirements. In order to improve the height simulation range of the wind tunnel test, CAAA designed a vacuum exhaust branch based on the original equipment of its newly built Ф1.2 m hypersonic wind tunnel to realize the pressure vacuum mode operation of the wind tunnel. The wind tunnel system debugging and testing results show that after the wind tunnel capacity is improved, each subsystem works normally and the system performance reaches the design target, and the hypersonic flow field condition at the altitude above 40 km with Mach number 5–8 is realized. The flow field index in the uniform area of the test section meets the relevant requirements of the aerodynamic test of the National military standard GJB 4399-2002. It provides a test platform for the study of aerodynamic characteristics of aircraft and complex hypersonic flow at high altitude.
  • [1]
    唐志共, 邓建平, 王志坚. CARDC新的Φ1米高超声速风洞[C]// 中国空气动力学会高超声速前沿问题研讨会论文集. 2002.
    [2]
    许晓斌. 常规高超声速风洞与试验技术[M]. 北京: 国防工业出版社, 2015.
    [3]
    陈勤学. 国外0.5米~1.5米常规高超声速风洞调查[J]. 气动研究与发展,2001,11(3):1-8.

    CHEN Q X. Survey of 0.5 m–1.5 m foreign conventional hypersonic wind tunnel[J]. Aerodynamics Research and Development,2001,11(3):1-8.
    [4]
    SEKINE H, HIRABAYASHI N, KOYAMA T, et al. Mach number calibration on Mach 5 and 7 nozzles of 0.5 m Hypersonic Wind Tunnel[R]. JAXA-RR-05-043, 2006.
    [5]
    孙勇堂, 赵之平, 石运军, 等. CAAA新建Φ1.2米常规高超声速风洞[C]// 中国力学大会–2017暨庆祝中国力学学会成立60周年大会论文集(B). 2017.
    [6]
    周勇为,易仕和,程忠宇. Φ200高超声速风洞调试和流场校测[J]. 国防科技大学学报,2009,31(6):57-61. DOI: 10.3969/j.issn.1001-2486.2009.06.011

    ZHOU Y W,YI S H,CHENG Z Y. The test and calibration of Φ200 hypersonic wind tunnel[J]. Journal of National University of Defense Technology,2009,31(6):57-61. doi: 10.3969/j.issn.1001-2486.2009.06.011
    [7]
    马利川, 石运军, 黄炳修, 等. 大型高超声速风洞超低来流总压调节系统及应用[C]//第十一届全国流体力学学术会议论文摘要集. 2020: 573.
    [8]
    路波. 高速风洞测力试验数据处理方法[M]. 北京: 国防工业出版社, 2014.
    [9]
    张涵信. 高超声速气动力试验[M]. 北京: 国防工业出版社, 2004.
  • Related Articles

    [1]ZHU Dongyu, FENG Qiang, Han Xiaotao, Yang Ximing, Cui Xiaochun, Yuan Li. Researches on a large natural moveable icing wind tunnel and test methods[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 52-61. DOI: 10.11729/syltlx20210100
    [2]GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, YANG Shengke, LIN Wei. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. DOI: 10.11729/syltlx20190113
    [3]ZHU Xinxin, LONG Yongsheng, SHI Youan, YANG Qingtao, ZHOU Ping, ZHAO Shunhong. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 87-93. DOI: 10.11729/syltlx20190062
    [4]Zhang Hui, Fan Litao. Correlation analysis of large low speed wind tunnel test on CHN-T1 calibration model[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 106-111. DOI: 10.11729/syltlx20180046
    [5]Gao Guochi, Li Baoliang, Ding Li, Wang Zixu, Ni Zhangsong. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 95-101. DOI: 10.11729/syltlx20180064
    [6]Wang Zixu, Shen Hao, Guo Long, Guo Xiangdong, Ni Zhangsong. Cloud calibration method of 3m×2m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67. DOI: 10.11729/syltlx20170163
    [7]Zhou Feng, Feng Lijuan, Xu Chaojun, Zhao Keliang, Han Zhirong. Determination and verification of critical ice shape for the certification of civil aircraft[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 8-13. DOI: 10.11729/syltlx20160019
    [8]Shen Chen, Yang Zhigang. Numerical methods exploration and experimental validation of Ahmed model with consideration of fluid-solid-interaction effect[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 37-42. DOI: 10.11729/syltlx20130017
    [9]YUAN Hong-gang, YANG Yong-dong, ZHANG Gui-chuan, HUANG Ming-qi. Improving techniques and validating of rotor and fuselage compound model test stand[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4): 87-90. DOI: 10.3969/j.issn.1672-9897.2012.04.018
    [10]GUO Shan-guang, LIU Jun, JIN Liang, LUO Shi-bin. Numerical simulation and experiment validation on shock oscillations of inner flow path of hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 7-11. DOI: 10.3969/j.issn.1672-9897.2012.01.002
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views (1562) PDF downloads (81) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close