WANG H,WU D,ZHU X X,et al. The study on transient heat flux measurement based on hybrid heat transfer modes[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):92-97.. DOI: 10.11729/syltlx20210030
Citation: WANG H,WU D,ZHU X X,et al. The study on transient heat flux measurement based on hybrid heat transfer modes[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):92-97.. DOI: 10.11729/syltlx20210030

The study on transient heat flux measurement based on hybrid heat transfer modes

More Information
  • Received Date: March 25, 2021
  • Revised Date: April 06, 2021
  • Available Online: August 25, 2021
  • The transient heat flux is an important parameter simulated in the high temperature flowfield of the arc heater test. With respect to the harsh aerodynamic heating environment with high-level heat flux and intensive erosion, a modified transient heat flux measurement method is firstly proposed based on the hybrid heat transfer modes of heat capacity and one-dimensional semi-infinite heat transfer. Then, a novel structure of the transient heat flux sensor is designed and fabricated for the hybrid method. The sensor calibration is evaluated on the calibration system, and it is found that it has a good linear sensitivity and the proposed measurement method is favorable to its rapid-response. Finally, the on-site measurement results show that this type of heat flux sensor has a good robust and dynamical response, which can be applied under the high-level heat flux environment of the arc heater test.
  • [1]
    LIEBERT C H. Measurement of local high-level, transient surface heat flux[R]. NASA-2840, 1988.
    [2]
    ASTM E598-96. Standard test method for measuring extreme heat-transfer rates from high-energy environments using a transient, null-point calorimeter[S]. West Conshohocken, PA: ASTM International, 1996. doi: 10.1520/E0598-96R02
    [3]
    王辉, 程光辉, 吴东, 等. 一种瞬态热流传感器及其测试方法: 中国, CN111947882A[P]. 2020-11-17.

    WANG H, CHENG G H, WU D, et al. Transient heat flow sensor and test method thereof: China, CN111947882A[P]. 2020-11-17.
    [4]
    KIDD C T. High heat flux measurements and experimental calibrations/characterizations[R]. NASA-CP-3161, 1992.
    [5]
    FRANKEL J I,KEYHANI M,ELKINS B E. Surface heat flux prediction through physics-based calibration, part 1: theory[J]. Journal of Thermophysics and Heat Transfer,2013,27(2):189-205. doi: 10.2514/1.T3917
    [6]
    ELKINS B S,KEYHANI M,FRANKEL J I. Surface heat flux prediction through physics-based calibration, part 2: experimental validation[J]. Journal of Thermophysics and Heat Transfer,2013,27(2):206-216. doi: 10.2514/1.T3918
    [7]
    BATTAGLIA J L,COIS O,PUIGSEGUR L,et al. Solving an inverse heat conduction problem using a non-integer identified model[J]. International Journal of Heat and Mass Transfer,2001,44(14):2671-2680. doi: 10.1016/S0017-9310(00)00310-0
    [8]
    LÖHLE S,BATTAGLIA J L,BATSALE J C,et al. Characterization of a heat flux sensor using short pulse laser calibration[J]. The Review of Scientific Instruments,2007,78(5):053501. doi: 10.1063/1.2736388
    [9]
    LÖHLE S,BATTAGLIA J L,JULLIEN P,et al. Improvement of high heat flux measurement using a null-point calorimeter[J]. Journal of Spacecraft and Rockets,2008,45(1):76-81. doi: 10.2514/1.30092
    [10]
    LÖHLE S, BATTAGLIA J L. Transient heat flux measurements in high enthalpy air plasma flows using a non-integer system identification approach[C]//Proc of the 41st AIAA Thermophysics Conference. 2009. doi: 10.2514/6.2009-4239
    [11]
    NAWAZ A, SANTOS J. Assessing calorimeter evaluation methods in convective heat flux environments[C]//Proc of the 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2010. doi: 10.2514/6.2010-4905
    [12]
    INCROPERA F P. DEWITT D P. 传热基础[M]. 陆大有, 于广经, 朱谷君, 等译. 北京: 宇航出版社, 1985.
    [13]
    KIDD C, ADAMS J C Jr. Development of a heat-flux sensor for commonality of measurement in AEDC hypersonic wind tunnels[C]//Proc of the 21st AIAA Aerodynamic Measurment Technology and Ground Testing Conference. 2000. doi: 10.2514/6.2000-2514
    [14]
    ZHANG S Z,WANG Q,LI J P,et al. A fast-response calorimeter with dynamic corrections for transient heat transfer measurements[J]. Applied Sciences,2020,10(17):6143. doi: 10.3390/app10176143
    [15]
    WANG H,YANG Q T,ZHU X X,et al. Inverse estimation of heat flux using linear artificial neural networks[J]. International Journal of Thermal Sciences,2018,132:478-485. doi: 10.1016/j.ijthermalsci.2018.04.034
    [16]
    ASTM E511-01. Standard test method for measuring heat flux using a copper-constantan circular foil, heat-flux transducer[S]. West Consho-hocken, PA: ASTM International, 2001.
    [17]
    KIRKUP L, FRENKEL B. 测量不确定度导论[M]. 曾翔君, 骆一萍, 申淼, 译. 西安: 西安交通大学出版社, 2001.
    [18]
    MURTHY A V,TSAI B K,SAUNDERS R D. Transfer calibration validation tests on a heat flux sensor in the 51 mm high-temperature blackbody[J]. Journal of Research of the National Institute of Standards and Technology,2001,106(5):823-831. doi: 10.6028/jres.106.039
  • Related Articles

    [1]DONG Lin, WEN Guoan, LEI Ziwei, RINOSHIKA Akira. PIV experimental study on vortex structures induced by free autorotation fall of a samaras[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 54-60. DOI: 10.11729/syltlx20200004
    [2]FU Hao, HE Chuangxin, LIU Yingzheng. PIV experimental study on flow characteristics of a low swirl number precessing jet[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 39-45. DOI: 10.11729/syltlx20200129
    [3]WANG Fujun, WANG Hongping, GAO Qi, WEI Runjie, LIU Yanpeng. PIV experimental study on fish swimming vortex structure[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 20-28. DOI: 10.11729/syltlx20200039
    [4]SHEN Feng, YAN Chengjin, LI Mengqi, JI Deru, LIU Zhaomiao. Micro-PIV study on flow field characteristics of droplets in a microcavity[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 67-72. DOI: 10.11729/syltlx20190117
    [5]Zhang Jun, Bai Yaqiang, Zhai Shucheng, Zhang Guoping, Xu Lianghao. PIV measurement on streamwise vortex generated by undulating fins[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 15-21. DOI: 10.11729/syltlx20170017
    [6]Liu Ping'an, Lin Yongfeng, Chen Yaofeng, Yuan Mingchuan. Blade tip vortex measurements of a hovering rotor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 39-44. DOI: 10.11729/syltlx20160186
    [7]Wu Jinhua, Sun Haisheng, Shen Zhihong, Jiang Yubiao. 旋转流场下的振荡动导数试验技术研究[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 54-58. DOI: 10.11729/syltlx20130057
    [8]WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008
    [9]LI Hao, LIN Ming, ZHANG Yu-shan, SHEN Ji-kui, CHEN Chun-de. Study on centeral-dump combustor by PIV[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 45-49,59. DOI: 10.3969/j.issn.1672-9897.2011.04.009
    [10]ZHANG Xiao-di, JIANG Jia-li, JIA Yuan-sheng, MA Hong-zhi, XIAO Ya-ke. Measurements of cylinder's wake by PIV[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 74-78. DOI: 10.3969/j.issn.1672-9897.2005.02.015
  • Cited by

    Periodical cited type(1)

    1. 张怀宝,王靖宇,Bailey Sean C.C.,王光学,邓小刚. 低雷诺数壁面约束流动皮托管测速误差分析与校正. 国防科技大学学报. 2018(03): 37-41 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (594) PDF downloads (65) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close