QUAN Tong, LIAO Shenfei, ZOU Liyong, QIU Hua. Instability of an interface subjected to a perturbed shock: reflected shock effects[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 12-19. DOI: 10.11729/syltlx20200019
Citation: QUAN Tong, LIAO Shenfei, ZOU Liyong, QIU Hua. Instability of an interface subjected to a perturbed shock: reflected shock effects[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 12-19. DOI: 10.11729/syltlx20200019

Instability of an interface subjected to a perturbed shock: reflected shock effects

More Information
  • Received Date: February 12, 2020
  • Revised Date: March 16, 2020
  • The Richtmyer-Meshkov(RM) instability of a N2/SF6 interface subjected to a perturbed shock is investigated experimentally in a vertical shock tube. The perturbed shock is generated by a planar shock diffracting around a rigid cylinder and the initial uniform interface is formed by a membraneless method. Three different dimensionless distances η (the ratio of spacing from the cylinder to the interface over the cylinder diameter) are considered. Dynamic images of the interface evolution after the impact of the reflected shock are obtained using both schlieren and planar Mie scattering techniques. Our previous study (Zou, et al., 2017) indicated that, after the impingement of the incident shock, the interface evolves into a "Λ" shape structure with two interface steps at both sides and a cavity at the center. The results in present paper show that, due to the impingement of the reflected shock, the "Λ" shape structure interface first experiences a fast phase reversal and then the perturbation increases gradually. For η=2.0 case, the interface evolves into an overall bubble structure, while for η=3.3 and η=4.0 cases, a spike appears in the center of the interface besides the overall bubble. The mixing width is further measured from Mie scattering images and compared with the theoretical values. It is found that at the linear stage, the interface width can be predicted well by the linear model proposed by Meyer and Blewett, and at the nonlinear stage, the width can be reasonably estimated by the model proposed by Dimonte and Ramaprabhu. In particular, the distinction between the theoretical prediction and the experimental result is the lowest for the case of η=4.0.
  • [1]
    RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1960, 13(2):297-319. DOI: 10.1002/cpa.3160130207
    [2]
    MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynamics, 1969, 4(5):101-104. DOI: 10.1007/BF01015969
    [3]
    ARNETT D. The role of mixing in astrophysics[J]. The Astrophysical Journal Letters Supplement Series, 2000, 127(2):213-217. DOI: 10.1086/313364
    [4]
    AMENDT P, COLVIN J D, TIPTON R E, et al. Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility:design and analysis[J]. Physics of Plasmas, 2002, 9(5):2221-2233. DOI: 10.1063/1.1459451
    [5]
    LINDL J, LANDEN O, EDWARDS J, et al. Review of the national ignition campaign 2009-2012[J]. Physics of Plasmas, 2014, 21(2):020501. DOI: 10.1063/1.4865400
    [6]
    古滨, 李炳南, 姚熊亮, 等.水下冲击波作用下双层壳结构响应特征研究[J].兵器装备工程学报, 2019, 40(11):11-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scbgxb201911003

    GU B, LI B N, YAO X L, et al. Research of impact response of double-shell based on underwater explosion shock wave[J]. Journal of Sichuan Ordnance, 2019, 40(11):11-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scbgxb201911003
    [7]
    姬建荣, 苏健军, 陈君, 等.动爆冲击波传播特性实验研究[J].兵器装备工程学报, 2019, 40(12):20-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scbgxb201912005

    JI J R, SU J J, CHEN J, et al. Experimental study on propagation characteristics of dynamic blast wave[J]. Journal of Sichuan Ordnance, 2019, 40(12):20-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scbgxb201912005
    [8]
    BROUILLETTE M. The Richtmyer-Meshkov instability[J]. Annual Review of Fluid Mechanics, 2002, 34(1):445-468. DOI: 10.1146/annurev.fluid.34.090101.162238
    [9]
    DIMOTAKIS P E. Turbulent mixing[J]. Annual Review of Fluid Mechanics, 2005, 37(1):329-356. http://www.ams.org/mathscinet-getitem?mr=2115346
    [10]
    RANJAN D, OAKLEY J, BONAZZA R. Shock-bubble interactions[J]. Annual Review of Fluid Mechanics, 2011, 43(43):117-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3ca52260f085621b571fe8f4c47e6278
    [11]
    ZHAI Z G, ZOU L Y, WU Q, et al. Review of experimental Richtmyer-Meshkov instability in shock tube:from simple to complex[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2018, 232(16):2830-2849. DOI: 10.1177/0954406217727305
    [12]
    ANDRONOV V, BAKHRAKH S, MESHKOV E, et al. Tur-bulent mixing at contact surface accelerated by shock waves[J]. Soviet Journal of Experimental and Theoretical Physics, 1976, 44(2):424-427. http://adsabs.harvard.edu/abs/1976JETP...44..424A
    [13]
    LATINI M, SCHILLING O, DON W S. High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability:comparison to experimental data and to amplitude growth model predictions[J]. Physics of Fluids, 2007, 19(2):024104. DOI: 10.1063/1.2472508
    [14]
    HILL D J, PANTANO C, PULLIN D. Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock[J]. Journal of Fluid Mechanics, 2006, 557:29-61. DOI: 10.1017/S0022112006009475
    [15]
    SI T, ZHAI Z G, YANG J M, et al. Experimental investi-gation of reshocked spherical gas interfaces[J]. Physics of Fluids, 2012, 24(5):054101. DOI: 10.1063/1.4711866
    [16]
    BALAKUMAR B J, ORLICZ G C, RISTORCELLI J R, et al. Turbulent mixing in a Richtmyer-Meshkov fluid layer after reshock:velocity and density statistics[J]. Journal of Fluid Mechanics, 2012, 696:67-93. DOI: 10.1017/jfm.2012.8
    [17]
    张赋, 翟志刚, 司廷, 等.反射激波作用下重气柱界面演化的PIV研究[J].实验流体力学, 2014, 28(5):13-17. http://www.syltlx.com/CN/abstract/abstract10767.shtml

    ZHANG F, ZHAI Z G, SI T, et al. Experimental study on the evolution of heavy gas cylinder under reshock condition by PIV method[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(5):13-17. http://www.syltlx.com/CN/abstract/abstract10767.shtml
    [18]
    何惠琴, 翟志刚, 司廷, 等.反射激波作用下两种重气柱界面不稳定性实验研究[J].实验流体力学, 2014, 28(6):56-60. http://www.syltlx.com/CN/abstract/abstract10790.shtml

    HE H Q, ZHAI Z G, SI T, et al. Experimental study on thereshocked RM instability of two kinds of heavy gas cylinder[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6):56-60. http://www.syltlx.com/CN/abstract/abstract10790.shtml
    [19]
    ZOU L Y, LIAO S F, LIU C L, et al. Aspect ratio effect on shock-accelerated elliptic gas cylinders[J]. Physics of Fluids, 2016, 28(3):036101. DOI: 10.1063/1.4943127
    [20]
    ISHIZAKI R, NISHIHARA K, SAKAGAMI H, et al. Instability of a contact surface driven by a nonuniform shock wave[J]. Physical Review E, 1996, 53(6):r5592. DOI: 10.1103/PhysRevE.53.R5592
    [21]
    刘金宏, 邹立勇, 曹仁义, 等.绕射激波和反射激波作用下N2/SF6界面R-M不稳定性实验研究[J].力学学报, 2014, 46(3):475-479. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201403016

    LIU J H, ZOU L Y, CAO R Y, et al. Experimentally study of the Richtmyer-Meshkov instability at N2/SF6 flat interfaces by diffracted incident shock waves and reshock[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3):475-479. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201403016
    [22]
    ZOU L Y, LIU J H, LIAO S F, et al. Richtmyer-Meshkov instability of a flat interface subjected to a rippled shock wave[J]. Physical Review E, 2017, 95(1):013107. DOI: 10.1103/PhysRevE.95.013107
    [23]
    LIAO S F, ZHANG W B, CHEN H, et al. Atwood number effects on the instability of a uniform interface driven by a perturbed shock wave[J]. Physical Review E, 2019, 99(1):013103. http://www.researchgate.net/publication/330229413_Atwood_number_effects_on_the_instability_of_a_uniform_interface_driven_by_a_perturbed_shock_wave
    [24]
    ZHAI Z G, LIANG Y, LIU L L, et al. Interaction of rippled shock wave with flat fast-slow interface[J]. Physics of Fluids, 2018, 30(4):046104. DOI: 10.1063/1.5024774
    [25]
    ZOU L Y, ALMAROUF M, CHENG W, et al. Richtmyer-Meshkov instability of an unperturbed interface subjected to a diffracted convergent shock[J]. Journal of Fluid Mechanics, 2019, 879:448-467. DOI: 10.1017/jfm.2019.694
    [26]
    COLLINS B D, JACOBS J W. PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF6 interface[J]. Journal of Fluid Mechanics, 2002, 464:113-136. DOI: 10.1017/S0022112002008844
    [27]
    ZOU L Y, LIU C L, TAN D W, et al. On interaction of shock wave with elliptic gas cylinder[J]. Journal of Visualization, 2010, 13(4):347-353. DOI: 10.1007/s12650-010-0053-y
    [28]
    RIGHTLEY P M, VOROBIEFF P, BENJAMIN R F. Evolution of a shock-accelerated thin fluid layer[J]. Physics of Fluids, 1997, 9(6):1770-1782. DOI: 10.1063/1.869299
    [29]
    MIKAELIAN K O. Functions sinKx and cosKx[J]. Journal of Physics A:Mathematical and General, 1993, 26(7):1673-1689. DOI: 10.1088/0305-4470/26/7/023
    [30]
    MEYER K, BLEWETT P J. Numerical investigation of the stability of a shock-accelerated interface between two fluids[J]. Physics of Fluids, 1972, 15(5):753-759. DOI: 10.1063/1.1693980
    [31]
    DIMONTE G, RAMAPRABHU P. Simulations and model of the nonlinear Richtmyer-Meshkov instability[J]. Physics of Fluids, 2010, 22(1):014104. DOI: 10.1063/1.3276269
  • Related Articles

    [1]ZHU Chang, XU Guoliang, ZHANG Chengjian, Yang Yifan, WU Jie. Experimental investigation of crossflow instability upon a 6 degree hypersonic sharp cone model with rough surface[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20240011
    [2]SUN Yuchen, CHENG Pan, YU Jinhai. Aeroelastic correction for nonlinear aerodynamic data in wind tunnel tests[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 74-82. DOI: 10.11729/syltlx20200140
    [3]Wang Di, Nie Wansheng, Zhou Siyin, Wang Haiqing, Su Lingyu. Experimental analysis on the longitudinal high frequency combustion instability of a single-element model engine[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 18-23, 73. DOI: 10.11729/syltlx20170162
    [4]Zhu Ledong, Zhuang Wanlyu, Gao Guangzhong. Discussionon several important issues in measurement and indirect verification of nonlinear galloping self-excited forceson rectangular cylinders[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 16-31. DOI: 10.11729/syltlx20170024
    [5]Long Tong, Zhai Zhigang, Si Ting, Luo Xisheng. Design and validation of a vertical annular shock tube for RM instability study[J]. Journal of Experiments in Fluid Mechanics, 2014, (6): 86-91. DOI: 10.11729/syltlx20130106
    [6]LIU Jin-hong, HUANG Wen-bin, TAN Duo-wang, ZOU Li-yong, GUO Wen-can. Experimental study of instability of shock accelerated Air/SF6 inclined interfaces[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(6): 27-31. DOI: 10.3969/j.issn.1672-9897.2010.06.006
    [7]ZHUO Qi-wei, SHI Hong-hui. Experimental study of Richtmyer-Meshkov instability at a gas/liquid interface in a shock tube[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 25-30. DOI: 10.3969/j.issn.1672-9897.2007.01.005
    [8]LIU Zhi-tao, SUN Hai-sheng, JIANG Yu-biao, JIANG Feng. Fuzzy logic modeling of nonlinear unsteady aerodynamics[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 99-103. DOI: 10.3969/j.issn.1672-9897.2005.01.020
    [9]SUN Jian-hong, LI Qi-chang, LIU Jun-zhi. Influence of nonlinear gas oscillations on rectangular wings[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 17-21,34. DOI: 10.3969/j.issn.1672-9897.2005.01.003
    [10]Active control isolation simulink research for a class of nonlinear chaotic vibration systems in equipments[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(3): 73-79. DOI: 10.3969/j.issn.1672-9897.2002.03.013
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (333) PDF downloads (28) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close