LIU Xunchen, WANG Guoqing. Experimental measurement of the flow field of a swirling flame under large amplitude acoustic forcing[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 53-60. DOI: 10.11729/syltlx20190165
Citation: LIU Xunchen, WANG Guoqing. Experimental measurement of the flow field of a swirling flame under large amplitude acoustic forcing[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 53-60. DOI: 10.11729/syltlx20190165

Experimental measurement of the flow field of a swirling flame under large amplitude acoustic forcing

More Information
  • Received Date: December 08, 2019
  • Revised Date: January 09, 2020
  • The dynamic of a swirling flame under high acoustic perturbation characterizes its non-linear acoustic response. Here, it shows that the time-dependent flow field of a swirling flame under large amplitude acoustic forcing, measured by high-repetition rate pulse burst laser Particle Image Velocimetry (PIV) technique, is highly non-linear. The periodic vortex structures formed in the inner and outer shear layers of the swirling flame can interact with the flame front and flow field though distinct manners:the vortex ring formed in the outer shear layer folds the flame front and alters the flame heat release rate; the vortex ring formed in the inner shear layer mainly affects the velocity distribution in the recirculation zone. We quantitatively analyzed the effects of the outer/inner vortex rings, including the trajectory, vorticity, circulation and size. We found that exit velocity and acceleration are the main factors that determine the formation and release of the out shear layer vortex ring.
  • [1]
    HUANG Y, YANG V. Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science, 2009, 35(4):293-364. DOI: 10.1016/j.pecs.2009.01.002
    [2]
    CANDEL S, DUROX D, SCHULLER T, et al. Dynamics of swirling flames[J]. Annual Review of Fluid Mechanics, 2014, 46(46):147-173. DOI: 10.1146/annurev-fluid-010313-141300
    [3]
    BELLOWS B D, BOBBA M K, FORTE A, et al. Flame transfer function saturation mechanisms in a swirl-stabilized combustor[J]. Proceedings of the Combustion Institute, 2007, 31(2):3181-3188. DOI: 10.1016/j.proci.2006.07.138
    [4]
    PALIES P, DUROX D, SCHULLER T, et al. The combined dynamics of swirler and turbulent premixed swirling flames[J]. Combustion and Flame, 2010, 157(9):1698-1717. DOI: 10.1016/j.combustflame.2010.02.011
    [5]
    KIM K T, SANTAVICCA D A. Interference mechanisms of acoustic/convective disturbances in a swirl-stabilized lean-premixed combustor[J]. Combustion and Flame, 2013, 160(8):1441-1457. DOI: 10.1016/j.combustflame.2013.02.022
    [6]
    MALANOSKI M, AGUILAR M, O'CONNOR J, et al. Flame leading edge and flow dynamics in a swirling, lifted flame[C]//Proceedings of ASME Conference on ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, 2013: 199-209.
    [7]
    KVLSHEIMER C, BVCHNER H. Combustion dynamics of turbulent swirling flames[J]. Combustion and Flame, 2002, 131(1-2):70-84. DOI: 10.1016/S0010-2180(02)00394-2
    [8]
    JUNIPER M P, SUJITH R I. Sensitivity and nonlinearity of thermoacoustic oscillations[J]. Annual Review of Fluid Mechanics, 2018, 50(1):661-689. DOI: 10.1146/annurev-fluid-122316-045125
    [9]
    Lieuwen T C. Unsteady combustor physics[M]. New York:Cambridge University Press, 2014.
    [10]
    BELLOWS B D, BOBBA M K, SEITZMAN J M, et al. Nonlinear flame transfer function characteristics in a swirl-stabilized combustor[J]. Jouranal of Engineering for Gas Turbines and Power Transactions of ASME, 2007, 129(4):954-961. DOI: 10.1115/1.2720545
    [11]
    PALIES P, DUROX D, SCHULLER T, et al. Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames[J]. Combustion and Flame, 2011, 158(10):1980-1991. DOI: 10.1016/j.combustflame.2011.02.012
    [12]
    LIANG H Z, MAXWORTHY T. An experimental investigation of swirling jets[J]. Journal of Fluid Mechanics, 2005, 525:115-159. DOI: 10.1017/S0022112004002629
    [13]
    MELIGA P, GALLAIRE F, CHOMAZ J M. A weakly nonlinear mechanism for mode selection in swirling jets[J]. Journal of Fluid Mechanics, 2012, 699:216-262. DOI: 10.1017/jfm.2012.93
    [14]
    OBERLEITHNER K, SCHIMEK S, PASCHEREIT C O. Shear flow instabilities in swirl-stabilized combustors and their impact on the amplitude dependent flame response:a linear stability analysis[J]. Combustion and Flame, 2015, 162(1):86-99. https://www.sciencedirect.com/science/article/pii/S0010218014002077
    [15]
    OBERLEITHNER K, SIEBER M, NAYERI C N, et al. Three-dimensional coherent structures in a swirling jet undergoing vortex breakdowwn:stability analysis and empirical mode construction[J]. Journal of Fluid Mechanics, 2011, 679:383-414. DOI: 10.1017/jfm.2011.141
    [16]
    HUANG R F, JUFAR S R, HSU C M. Flow and mixing characteristics of swirling double-concentric jets subject to acoustic excitation[J]. Experiments in Fluids, 2012, 54(1):1-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbf7b686d6610e879242bd125c6a3cdf
    [17]
    PALIES P, SCHULLER T, DUROX D, et al. Acoustically perturbed turbulent premixed swirling flames[J]. Physics of Fluids, 2011, 23(3):037101. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221342049/
    [18]
    WANG G Q, LIU X C, LI L, et al. Investigation on the flame front and flow field in acoustically excited swirling flames with and without confinement[J]. Combustion Science and Technology, 2019, 191:1-14. DOI: 10.1080/00102202.2018.1452120
    [19]
    O'CONNOR J, LIEUWEN T. Recirculation zone dynamics of a transversely excited swirl flow and flame[J]. Physics of Fluids, 2012, 24(7):075107. DOI: 10.1063/1.4731300
  • Related Articles

    [1]ZHU Chang, XU Guoliang, ZHANG Chengjian, Yang Yifan, WU Jie. Experimental investigation of crossflow instability upon a 6 degree hypersonic sharp cone model with rough surface[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20240011
    [2]SUN Yuchen, CHENG Pan, YU Jinhai. Aeroelastic correction for nonlinear aerodynamic data in wind tunnel tests[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 74-82. DOI: 10.11729/syltlx20200140
    [3]Wang Di, Nie Wansheng, Zhou Siyin, Wang Haiqing, Su Lingyu. Experimental analysis on the longitudinal high frequency combustion instability of a single-element model engine[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 18-23, 73. DOI: 10.11729/syltlx20170162
    [4]Zhu Ledong, Zhuang Wanlyu, Gao Guangzhong. Discussionon several important issues in measurement and indirect verification of nonlinear galloping self-excited forceson rectangular cylinders[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 16-31. DOI: 10.11729/syltlx20170024
    [5]Long Tong, Zhai Zhigang, Si Ting, Luo Xisheng. Design and validation of a vertical annular shock tube for RM instability study[J]. Journal of Experiments in Fluid Mechanics, 2014, (6): 86-91. DOI: 10.11729/syltlx20130106
    [6]LIU Jin-hong, HUANG Wen-bin, TAN Duo-wang, ZOU Li-yong, GUO Wen-can. Experimental study of instability of shock accelerated Air/SF6 inclined interfaces[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(6): 27-31. DOI: 10.3969/j.issn.1672-9897.2010.06.006
    [7]ZHUO Qi-wei, SHI Hong-hui. Experimental study of Richtmyer-Meshkov instability at a gas/liquid interface in a shock tube[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 25-30. DOI: 10.3969/j.issn.1672-9897.2007.01.005
    [8]LIU Zhi-tao, SUN Hai-sheng, JIANG Yu-biao, JIANG Feng. Fuzzy logic modeling of nonlinear unsteady aerodynamics[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 99-103. DOI: 10.3969/j.issn.1672-9897.2005.01.020
    [9]SUN Jian-hong, LI Qi-chang, LIU Jun-zhi. Influence of nonlinear gas oscillations on rectangular wings[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 17-21,34. DOI: 10.3969/j.issn.1672-9897.2005.01.003
    [10]Active control isolation simulink research for a class of nonlinear chaotic vibration systems in equipments[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(3): 73-79. DOI: 10.3969/j.issn.1672-9897.2002.03.013

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close