LIU Yuwen, XU Lianghao, SONG Mingtai, GU Xiangnan, PENG Xiaoxing. Experimental research progress of hydrofoil tip vortex cavitation[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 1-11. DOI: 10.11729/syltlx20190083
Citation: LIU Yuwen, XU Lianghao, SONG Mingtai, GU Xiangnan, PENG Xiaoxing. Experimental research progress of hydrofoil tip vortex cavitation[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 1-11. DOI: 10.11729/syltlx20190083

Experimental research progress of hydrofoil tip vortex cavitation

More Information
  • Received Date: June 25, 2019
  • Revised Date: November 11, 2019
  • As a typical vortex cavitation phenomenon, Tip Vortex Cavitation (TVC) occurring on the propellers (or duct propellers) and hydro-turbines has been widely investigated in experiments. To figure out the research orientations and the key problems in the near future, experimental research progress and results about the three stages of TVC, that are inception, development and collapse, are summarized to provide reference for further studies. On the inception of TVC, analysis of vortex dynamics of the tip flow field is conducted to get preliminary acquaintance with mechanics of its inception under various phase transformation conditions of bubble nuclei, low pressure and action time of low pressure, based on vortex theoretical models and experimental measurement technology. On the development of TVC characteristiced by a sharp increase of the radiation noise, research on the morphology of TVC and characteristics of the corresponding radiation noise is carried out for a better understanding of the mechanism of the development and radiation noise of TVC, in combination of high-speed photography of the morphology and acoustic signal acquisition of TVC. The collapse of TVC is only mentioned briefly, because few attention is paid to this issue as it can hardly cause vibration and erosion on hull structures. An accurate prediction of the inception of TVC in practice is still an open question though some progress is made in the fundamental research of TVC. How to quantify the scale effect of the vital parameters, such as load, Reynolds number and water quality, and how to improve the incipient prediction formula of TVC are problems still to be solved.
  • [1]
    ARNDT R E A. Cavitation in fluid machinery and hydraulic structures[J]. Annual Review of Fluid Mechanics, 1981, 13(1):273-326. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=294b4bafb6ef7b32fe609e80fcbf07ae
    [2]
    ARNDT R E A. Cavitation in vertical flows[J]. Annual Review of Fluid Mechanics, 2002, 34(1):143-175.
    [3]
    潘森森, 彭晓星.空化机理[M].北京:国防工业出版社, 2013:30-89.

    PAN S S, PENG X X. Physical mechanism of cavitation[M]. Beijing:National Defense Industry Press, 2013:30-89.
    [4]
    KORKUT E, ATLAR M. On the importance of the effect of turbulence in cavitation inception tests of marine propellers[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2002, 458(2017):29-48. DOI: 10.1098/rspa.2001.0852
    [5]
    ZHANG L X, ZHANG N, PENG X X, et al. A review of studies of mechanism and prediction of tip vortex cavitation inception[J]. Journal of Hydrodynamics, 2015, 27(4):488-495. DOI: 10.1016/S1001-6058(15)60508-X
    [6]
    ARNDT R E A, KELLER A P. Water quality effects on cavitation inception in a trailing vortex[J]. Journal of Fluids Engineering, 1992, 114(3):430-438. http://ci.nii.ac.jp/naid/30037587761
    [7]
    ARNDT R E A, MAINES B H. Nucleation and bubble dynamics in vortical flows[J]. Journal of Fluids Engineering, 2000, 122(3):488-493. DOI: 10.1115/1.1286994
    [8]
    ARNDT R E A, MAINES B H. Viscous effects in tip vortex cavitation and nucleation[R]. SAFL Technical Paper 397-Series A, 1994.
    [9]
    UBEROI M S, SHIVAMOGGI B K, CHEN S S. Axial flow in trailing line vortices[J]. Physics of Fluids, 1979, 22(2):214-217. DOI: 10.1063/1.862570
    [10]
    BATCHELOR G K. Axial flow in trailing line vortices[J]. Journal of Fluid Mechanics, 1964, 20(4):645-658. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=35361a04e6a04bd013831039e8749bc8
    [11]
    FRUMAN D H, CERRUTTI P, PICHON T, et al. Effect of hydrofoil planform on tip vortex roll-up and cavitation[J]. Journal of Fluids Engineering, 1995, 117(1):162-169. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbdf5a62b4ebb97e7517cd50aa6637ee
    [12]
    FRUMAN D H. Recent progress in the understanding and prediction of tip vortex on a rectangular hydrofoil[C]//Proc of the 2nd International Symposium on Cavitation. 1994.
    [13]
    FRUMAN D H, DUGUE C, PAUCHET A, et al. Tip vortex roll-up and cavitation[C]//Proc of the 19th Symposium on Naval Hydrodynamic. 1992.
    [14]
    FRUMAN D H, PICHON T, CERRUTTI P. Effect of a drag-reducing polymer solution ejection on tip vortex cavitation[J]. Journal of Marine Science and Technology, 1995, 1(1):13-23. DOI: 10.1007/BF01240009
    [15]
    BOULON O, CALLENAERE M, FRANC J, et al. An experimental insight into the effect of confinement on tip vortex cavitation of an elliptical hydrofoil[J]. Journal of Fluid Mechanics, 1999, 390:1-23. DOI: 10.1017/S002211209900525X
    [16]
    KATZ J, GALDO J B. Effect of roughness on rollup of tip vortices on a rectangular hydrofoil[J]. Journal of Aircraft, 1989, 26(3):247-253. DOI: 10.2514/3.45753
    [17]
    STINEBRING D R, FARRELL K J, BILLET M L. The structure of a three-dimensional tip vortex at high Reynolds numbers[J]. Journal of Fluids Engineering, 1991, 113(3):496-503. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000113000003000496000001&idtype=cvips&gifs=Yes
    [18]
    RAN B, KATZ J. Pressure fluctuations and their effect on cavitation inception within water jets[J]. Journal of Fluid Mechanics, 1994, 262:223-263. DOI: 10.1017/S0022112094000492
    [19]
    SOUDERS W G, PLATZER G P. Tip vortex cavitation characteristics and delay of inception on a three-dimensional hydrofoil[R]. DTNSRDC-81/007, 1981.
    [20]
    BRIANÇON-MARJOLLET L, MERLE L. Inception, develop-ment, and noise of a tip vortex cavitation[C]//Proc of the 21st Symposium on Naval Hydrodynamic. 1996.
    [21]
    MAINES B H, ARNDT R E A. Tip vortex formation and cavitation[J]. Journal of Fluids Engineering, 1997, 119(2):413. http://www.researchgate.net/publication/277499680_Tip_Vortex_Formation_and_Cavitation
    [22]
    FRANC J P, MICHEL J M. Fundmentals of cavitation[M]. Dordrecht, Netherlands: Fluwer Academic Publishers, 2004.
    [23]
    姜树海.含气量对梢涡初生空化的影响[J].水利水运科学研究, 1989(2):53-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002790038

    JIANG S H. Influence of gas content on tip vortex cavitation inception[J]. Scientific Research on Water Conservancy and Transportation, 1989(2):53-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002790038
    [24]
    彭晓星, 王力, 潘森森.水中空气含量对旋涡空化的影响[J].水动力学研究与进展, 1989, 4(4):60-68. http://www.cqvip.com/QK/94099X/19894/140627.html

    PENG X X, WANG L, PAN S S. Air content effect on the vortex cavitation[J]. Journal of Hydrodynamics, 1989, 4(4):60-68. http://www.cqvip.com/QK/94099X/19894/140627.html
    [25]
    ZHANG L X, CHEN L Y, SHAO X M. The migration and growth of nuclei in an ideal vortex flow[J]. Physics of Fluids, 2016, 28(12):123305. DOI: 10.1063/1.4972275
    [26]
    PENG X X, XU L H, CAO Y T. The study of tip vortex flow and cavitation inception on an elliptical hydrofoil[C]//Proc of the 5th International Symposium on Marine Propulsion. 2017: 590-595.
    [27]
    PENG X X, XU L H, LIU Y W, et al. Experimental measurement of tip vortex flow field with/without cavitation in an elliptic hydrofoil[J]. Journal of Hydrodynamics, 2017, 29(6):939-953. DOI: 10.1016/S1001-6058(16)60808-9
    [28]
    刘玉文.梢隙流动及梢隙空化的实验研究[D].无锡: 中国船舶科学研究中心, 2017.

    LIU Y W. Experimental research of tip leakage flow and cavitation[D]. Wuxi: China Ship Scientific Research Center, 2017.
    [29]
    潘森森.空化核与空化起始[J].中国造船, 1989, 30(3):3-16. http://www.cnki.com.cn/Article/CJFDTotal-ZGZC198903000.htm

    PAN S S. Cavitation nuclei and cavitation inception[J]. Ship Building of China, 1989, 30(3):3-16. http://www.cnki.com.cn/Article/CJFDTotal-ZGZC198903000.htm
    [30]
    CHAHINE G L. Nuclei effects on cavitation inception and noise[C]//Proc of the 25th Symposium on Naval Hydrodynamics. 2004.
    [31]
    BOULON O, FRANC J P, MICHEL J M. Tip vortex cavitation on an oscillating hydrofoil[J]. Journal of Fluids Engineering, 1997, 119(4):752-758. DOI: 10.1115/1.2819494
    [32]
    ARAKERI V H, HIGUCHI H, ARNDT R E A. A model for predicting tip vortex cavitation characteristics[J]. Journal of Fluids Engineering, 1988, 110(2):190-193. DOI: 10.1115/1.3243533
    [33]
    ARNDT R E A, ARAKERI V H, HIGUCHI H. Some observations of tip-vortex cavitation[J]. Journal of Fluid Mechanics, 1991, 229:269-289. DOI: 10.1017/S0022112091003026
    [34]
    刘玉文, 徐良浩, 张国平, 等.梢隙流动空化初生及空化形态观测研究[J].水动力学研究与进展:A辑, 2017, 32(6):671-679. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdlxyjyjz201706002

    LIU Y W, XU L H, ZHANG G P, et al. Observation andresearch onthe cavitation inception and cavitation structure of tip leakage flow[J]. Journal of Hydrodynamics, 2017, 32(6):671-679. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdlxyjyjz201706002
    [35]
    SONG M T, XU L H, PENG X X, et al. An acoustic approach to determine tip vortex cavitation inception for an elliptical hydrofoil considering nuclei-seeding[J]. International Journal of Multiphase Flow, 2017, 90:79-87. DOI: 10.1016/j.ijmultiphaseflow.2016.12.008
    [36]
    HIGUCHI H, ARNDT R E A, ROGERS M F. Characteristics of tip vortex cavitation noise[J]. Journal of Fluids Engineering, 1989, 111(4):495-501. DOI: 10.1115/1.3243674
    [37]
    MAINES B H, ARNDT R E A. The case of the singing vortex[J]. Journal of Fluids Engineering, 1997, 119(2):271-276. DOI: 10.1115/1.2819130
    [38]
    姜树海.梢涡的初生空化及其发生位置[J].水动力学研究与进展, 1989, 4(1):13-22. http://www.cnki.com.cn/Article/CJFDTotal-SDLJ198901002.htm

    JIANG S H. Estimation of tip vortex cavitation inception and its location[J]. Journal of Hydrodynamics, 1989, 4(1):13-22. http://www.cnki.com.cn/Article/CJFDTotal-SDLJ198901002.htm
    [39]
    HSIAO C T, CHAHINE G L. Scaling of tip vortex cavitation inception for a marine open propeller[C]//Proc of the 27th Symposium on Naval Hydrodynamics. 2008.
    [40]
    STROBL T, HUBER R, KELLER A P. Cavitation scale effects and case studies on cavitation model tests[J]. International Journal on Hydropower & Dams, 2005, 12(1):86-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=103ac74bef1d51b89e9a0ff591967ecb
    [41]
    KUIPER G, VAN TERWISGA T J C, ZONDERVAN G J, et al. Cavitation inception tests on a systematic series of two-bladed propellers[C]//Proc of the 26th Symposium on Naval Hydrodynamics. 2006.
    [42]
    SONG M T, XU L H, PENG X X, et al. Acoustic modeling of the singing vortex and its sound signatures[J]. International Journal of Multiphase Flow, 2018, 99:205-212. DOI: 10.1016/j.ijmultiphaseflow.2017.10.007
    [43]
    顾湘男, 曾志波, 彭晓星, 等.三维水翼梢涡空泡和片空泡的雷诺数影响试验研究[J].中国造船, 2017, 58(1):28-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzc201701004

    GU X N, ZENG Z B, PENG X X, et al. Experimental investigation of the scale effect of Reynolds number for tip vortex cavitation and sheet cavitation around a three-dimensional hydrofoil[J]. Ship Building of China, 2017, 58(1):28-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzc201701004
  • Related Articles

    [1]ZHAO Jisong, ZHANG Jinming, WANG Boqiao. Measurement and visualization of surface friction beneath jet flow over planar surface using liquid crystal coatings[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 115-121. DOI: 10.11729/syltlx20210106
    [2]WANG Junqi, CHEN Zheng, NI Zhaoyong, GAN Caijun, LI Lang. Experimental study on structural characteristics of separation flow induced by 3D wedge in hypersonic laminar flow by oil visualization[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 115-120. DOI: 10.11729/syltlx20180026
    [3]Sha Xinguo, Wen Shuai, Yuan Minglun, Lu Hongbo, Ji Feng. Visualization of shock wave in hypersonic flow using electric discharge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 87-93. DOI: 10.11729/syltlx20170106
    [4]HUANG Shuo-qiao, SHEN Gong-xin, WEI Lai, GUO Peng. Flow visualization of butterfly hovering fly via a mechanical model[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(2): 59-64. DOI: 10.3969/j.issn.1672-9897.2010.02.013
    [5]LIU Shao-hui, ZHANG Ming-lu, L(U) Zhi-yong. Investigation of flow characteristics of delta wings pitching up and pitching oscillation with small amplitude[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3): 14-17,22. DOI: 10.3969/j.issn.1672-9897.2008.03.003
    [6]YANG Yi-hong, Yin Xie-zhen, LU Xi-yun. Flow visualization over a 2-D traveling wave wall[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 84-90,114. DOI: 10.3969/j.issn.1672-9897.2005.02.017
    [7]Simultaneous dynamic force measurements and flow visualization techniques in water tunnel[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(1): 75-79,88. DOI: 10.3969/j.issn.1672-9897.2004.01.017
    [8]Study of scouring of submarine pipelines in the Shengli oil field by flow visualizing[J]. Journal of Experiments in Fluid Mechanics, 2003, 17(3): 49-52. DOI: 10.3969/j.issn.1672-9897.2003.03.011
    [9]LI Jin-xue, ZHANG Wei-zhi, WANG Dan, ZHANG Shou-jun, YUAN Hui-jing, QIAO Yi. The flow field visualization about the sections of double delta-wing by laser sheet technology[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(2): 35-39. DOI: 10.3969/j.issn.1672-9897.2000.02.006
    [10]Yang Qide, Ma Mingsheng, Yu Tao, Hu Handong, Zhou Naichun, Zhang Jiaxing. Flow Visualization For An Unconventional Forebody[J]. Journal of Experiments in Fluid Mechanics, 1999, 13(1): 64-72. DOI: 10.3969/j.issn.1672-9897.1999.01.011
  • Cited by

    Periodical cited type(2)

    1. 刘晓宏,温治,杜宇航,苏福永,张四宗,楼国锋. 基于Fluent的气液双流体喷嘴雾化特性研究. 机电工程技术. 2024(03): 26-29+91 .
    2. 彭燕祥,张华,何贵成. 基于最大熵原理的喷雾液滴粒径分布预测研究. 农业机械学报. 2023(09): 217-226 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (258) PDF downloads (45) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close