Citation: | YAO Zhaohui, ZHANG Jingxian, HAO Pengfei. Effect of surface micro/nano-structure on gas-water interface stability and flow drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 73-79. DOI: 10.11729/syltlx20190161 |
[1] |
RASTEGARI A, AKHAVAN R. The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets[J]. Journal of Fluid Mechanics, 2018, 838:68-104. DOI: 10.1017/jfm.2017.865
|
[2] |
RAAYAI-ARDAKANI S, MCKINLEY G H. Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows[J]. Physics of Fluids, 2017, 29(9):093605. DOI: 10.1063/1.4995566
|
[3] |
ROTHSTEIN J P. Slip on superhydrophobic surfaces[J]. Annual Review of Fluid Mechanics, 2010, 42(42):89-109. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0808.1393
|
[4] |
HEMEDA A A, GAD-EL-HAK M, TAFRESHI H V. Effects of hierarchical features on longevity of submerged superhydrophobic surfaces with parallel grooves[J]. Physics of Fluids, 2014, 26(8):082103. DOI: 10.1063/1.4891363
|
[5] |
吕鹏宇, 薛亚辉, 段慧玲.超疏水材料表面液气界面的稳定性及演化规律[J].力学进展, 2016, 46(1):179-225. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601004
LYU P Y, XUE Y H, DUAN H L. Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces[J]. Advances in Mechanics, 2016, 46(1):179-225. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601004
|
[6] |
LEE C, KIM C J. Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls[J]. Langmuir, 2009, 25(21):12812-12818. DOI: 10.1021/la901824d
|
[7] |
JONES P R, HAO X Q, CRUZ-CHU E R, et al. Sustaining dry surfaces under water[J]. Scientific Reports, 2015, 5(1):12311. DOI: 10.1038/srep12311
|
[8] |
TUTEJA A, CHOI W, MABRY J M, et al. Robust omniphobic surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47):18200-18205. DOI: 10.1073/pnas.0804872105
|
[9] |
LIU T L, KIM C J. Turning a surface superrepellent even to completelywetting liquids[J]. Science, 2014, 346(6213):1096-1100. DOI: 10.1126/science.1254787
|
[10] |
OU J, PEROT B, ROTHSTEIN J P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J]. Physics of Fluids, 2004, 16(12):4635-4643. DOI: 10.1063/1.1812011
|
[11] |
JOSEPH P, COTTIN-BIZONNE C, BENOIT J M, et al. Slippage of water past superhydrophobic carbon nanotube forests in microchannels[J]. Physical Review Letters, 2006, 97(15):156104. DOI: 10.1103/PhysRevLett.97.156104
|
[12] |
CHOI C H, ULMANELLA U, KIM J, et al. Effective slip and friction reduction in nanograted superhydrophobic microchannels[J]. Physics of Fluids, 2006, 18(8):087105. DOI: 10.1063/1.2337669
|
[13] |
BYUN D, KIM J, KO H S, et al. Direct measurement of slip flows in superhydrophobic microchannels with transverse grooves[J]. Physics of Fluids, 2008, 20(11):113601. DOI: 10.1063/1.3026609
|
[14] |
HAO P F, WONG C, YAO Z H, et al. Laminar drag reduction in hydrophobic microchannels[J]. Chemical Engineering & Technology, 2009, 32(6):912-918. http://www.ecs.umass.edu/mie/faculty/rothstein/pub_files/PhysFluids2004v16p4635_4643.pdf
|
[15] |
WOOLFORD B, PRINCE J, MAYNES D, et al. Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls[J]. Physics of Fluids, 2009, 21(8):085106. DOI: 10.1063/1.3213607
|
[16] |
DANIELLO R J, WATERHOUSE N E, ROTHSTEIN J P. Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids, 2009, 21(8):085103. DOI: 10.1063/1.3207885
|
[17] |
SU Y W, JI B H, HUANG Y G, et al. Nature's design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation[J]. Langmuir, 2010, 26(24):18926-18937. DOI: 10.1021/la103442b
|
[18] |
BHUSHAN B, KOCH K, JUNG Y C. Biomimetic hierarchical structure for self-cleaning[J]. Applied Physics Letters, 2008, 93(9):093101. DOI: 10.1063/1.2976635
|
[19] |
SBRAGAGLIA M, PROSPERETTI A. A note on the effective slip properties for microchannel flows with ultrahydrophobic surfaces[J]. Physics of Fluids, 2007, 19(4):043603. DOI: 10.1063/1.2716438
|
[20] |
BLEVINS R D. Applied Fluid Dynamics Handbook[M]. New York:Van Nostrand Reinhold, 1984.
|
[21] |
LU S, YAO Z H, HAO P F, et al. Drag reduction in ultra hydrophobic channels with micro-nano structured surfaces[J]. Science China-Physics Mechanics & Astronomy, 2010, 53(7):1298-1305. DOI: 10.1007/s11433-010-4035-9
|
[22] |
ZHANG J X, TIAN H P, YAO Z H, et al. Evolutions of hairpin vortexes over a super hydrophobic surface in turbulent boundary layer flow[J]. Physics of Fluids, 2016, 28(9):095106. DOI: 10.1063/1.4962513
|
1. |
张怀宝,王靖宇,Bailey Sean C.C.,王光学,邓小刚. 低雷诺数壁面约束流动皮托管测速误差分析与校正. 国防科技大学学报. 2018(03): 37-41 .
![]() |