Citation: | LIU Yu, XIAO Baoguo, WANG Lan, CHEN Weiqiang. Standing stability enhancement method of oblique detonation waves in a confined space and its experimental validation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 109-116. DOI: 10.11729/syltlx20200084 |
[1] |
PRATT D T, HUMPHREY J W, GLENN D E. Morphology of standing oblique detonation waves[J]. Journal of Propulsion and Power, 1991, 7(5): 837-845. doi: 10.2514/3.23399
|
[2] |
GHORBANIAN K, STERLING J D. Influence of formation processes on oblique detonation wave stabilization[J]. Journal of Propulsion and Power, 1996, 12(3): 509-517. doi: 10.2514/3.24064
|
[3] |
ASHFORD S A, EMANUEL G. Wave angle for oblique detonation waves[J]. Shock Waves, 1994, 3(4): 327-329. doi: 10.1007/bf01415831
|
[4] |
VERREAULT J, HIGGINS A J, STOWE R A. Formation and structure of steady oblique and conical detonation waves[J]. AIAA Journal, 2012, 50(8): 1766-1772. doi: 10.2514/1.j051632
|
[5] |
CHOI J Y, SHIN E J R, JEUNG I S. Unstable combustion induced by oblique shock waves at the non-attaching condition of the oblique detonation wave[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2387-2396. doi: 10.1016/j.proci.2008.06.212
|
[6] |
KASAHARA J, HORⅡ T, ENDO T, et al. Experimental observation of unsteady H2-O2 combustion phenomena around hypersonic projectiles using a multiframe camera[J]. Symposium (International) on Combustion, 1996, 26(2): 2903-2908. doi: 10.1016/s0082-0784(96)80131-7
|
[7] |
KASAHARA J, FUJIWARA T, ENDO T, et al. Chapman-jouguet oblique detonation structure around hypersonic projectiles[J]. AIAA Journal, 2001, 39(8): 1553-1561. doi: 10.2514/2.1480
|
[8] |
KASAHARA J, ARAI T, CHIBA S, et al. Criticality for stabilized oblique detonation waves around spherical bodies in acetylene/oxygen/krypton mixtures[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2817-2824. doi: 10.1016/s1540-7489(02)80344-3
|
[9] |
MAEDA S, KASAHARA J, MATSUO A. Oblique detonation wave stability around a spherical projectile by a high time resolution optical observation[J]. Combustion and Flame, 2012, 159(2): 887-896. doi: 10.1016/j.combustflame.2011.09.001
|
[10] |
MAEDA S, SUMIYA S, KASAHARA J, et al. Initiation and sustaining mechanisms of stabilized Oblique Detonation Waves around projectiles[J]. Proceedings of the Combustion Institute, 2013, 34(2): 1973-1980. doi: 10.1016/j.proci.2012.05.035
|
[11] |
MAEDA S, SUMIYA S, KASAHARA J, et al. Scale effect of spherical projectiles for stabilization of oblique detonation waves[J]. Shock Waves, 2015, 25(2): 141-150. doi: 10.1007/s00193-015-0549-4
|
[12] |
TENG H H, JIANG Z L. On the transition pattern of the oblique detonation structure[J]. Journal of Fluid Mechanics, 2012, 713: 659-669. doi: 10.1017/jfm.2012.478
|
[13] |
TENG H H, JIANG Z L, NG H D. Numerical study on unstable surfaces of oblique detonations[J]. Journal of Fluid Mechanics, 2014, 744: 111-128. doi: 10.1017/jfm.2014.78
|
[14] |
TENG H H, NG H D, LI K, et al. Evolution of cellular structures on oblique detonation surfaces[J]. Combustion and Flame, 2015, 162(2): 470-477. doi: 10.1016/j.combustflame.2014.07.021
|
[15] |
YANG P F, TENG H H, JIANG Z L, et al. Effects of inflow Mach number on oblique detonation initiation with a two-step induction-reaction kinetic model[J]. Combustion and Flame, 2018, 193: 246-256. doi: 10.1016/j.combustflame.2018.03.026
|
[16] |
LIU Y, WANG L, XIAO B G, et al. Hysteresis phenomenon of the oblique detonation wave[J]. Combustion and Flame, 2018, 192: 170-179. doi: 10.1016/j.combustflame.2018.02.010
|
[17] |
LU F K, FAN H Y, WILSON D R. Detonation waves induced by a confined wedge[J]. Aerospace Science and Technology, 2006, 10(8): 679-685. doi: 10.1016/j.ast.2006.06.005
|
[18] |
SISLIAN J P, SCHIRMER H, DUDEBOUT R, et al. Propulsive performance of hypersonic oblique detonation wave and shock-induced combustion ramjets[J]. Journal of Propulsion and Power, 2001, 17(3): 599-604. doi: 10.2514/2.5783
|
[19] |
SCHWARTZENTRUBER T E, SISLIAN J P, PARENT B. Suppression of premature ignition in the premixed inlet flow of a shcramjet[J]. Journal of Propulsion and Power, 2005, 21(1): 87-94. doi: 10.2514/1.7003
|
[20] |
SISLIAN J P, MARTENS R P, SCHWARTZENTRUBER T E, et al. Numerical simulation of a real shcramjet flowfield[J]. Journal of Propulsion and Power, 2006, 22(5): 1039-1048. doi: 10.2514/1.14895
|
[21] |
ALEXANDER D C, SISLIAN J P. Computational study of the propulsive characteristics of a shcramjet engine[J]. Journal of Propulsion and Power, 2008, 24(1): 34-44. doi: 10.2514/1.29951
|
[22] |
EVANS J S, SCHEXNAYDER C J Jr. Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flames[J]. AIAA Journal, 1980, 18(2): 188-193. doi: 10.2514/3.50747
|
[23] |
FANG Y S, HU Z M, TENG H H, et al. Numerical study of inflow equivalence ratio inhomogeneity on oblique detonation formation in hydrogen-air mixtures[J]. Aerospace Science and Technology, 2017, 71: 256-263. doi: 10.1016/j.ast.2017.09.027
|
[24] |
IWATA K, NAKAYA S, TSUE M. Wedge-stabilized oblique detonation in an inhomogeneous hydrogen-air mixture[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2761-2769. doi: 10.1016/j.proci.2016.06.094
|
[25] |
BEN-DOR G. Shock wave reflection phenomena[M]. 2nd edition. Berlin: Springer, 2007.
|