Citation: | Cheng Liuwei, Zhong Fengquan, Du Mengmeng, Gu Hongbin, Zhang Xinyu. Study of characterization methods of supersonic combustion flame based on fractal geometry[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 97-102. DOI: 10.11729/syltlx20180084 |
[1] |
Yoshikawa I, Shim Y S, Nada Y, et al. A dynamic SGS combustion model based on fractal characteristics of turbulent premixed flames[J]. Proceedings of the Combustion Institute, 2013, 34(1):1373-1381. http://cn.bing.com/academic/profile?id=50f9c3e2e8a784f6efb68f3d9e5b7e53&encoded=0&v=paper_preview&mkt=zh-cn
|
[2] |
Mandelbrot B B. The fractal geometry of nature[M]. New York:Times Books, 1982.
|
[3] |
Sreenivasan K R, Meneveau C. The fractal facets of turbulence[J]. Journal of Fluid Mechanics, 1986, 173:357-386. DOI: 10.1017/S0022112086001209
|
[4] |
赵玉新, 易仕和, 田立丰, 等.超声速湍流混合层实验图像的分形度量[J].中国科学(G辑:物理学力学天文学), 2008, 38(5):562-571. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200805012.htm
Zhao Y X, Yi S H, Tian L F, et al. Fractal measurement of experimental images of supersonic turbulent mixing layer[J]. Science in China (Series G:Physics, Mechanics & Astronomy), 2008, 38(5):562-571. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200805012.htm
|
[5] |
杨宏旻, 顾璠, 刘勇, 等.湍流预混火焰传播速度的分形模型研究[J].工程热物理学报, 2001, 22(4):507-510. DOI: 10.3321/j.issn:0253-231X.2001.04.032
Yang H M, Gu P, Liu Y, et al. The investigation on fractal model of the propagating speed of turbulent premixed flame[J]. Journal of Engineering Thermophysics, 2001, 22(4):507-510. DOI: 10.3321/j.issn:0253-231X.2001.04.032
|
[6] |
蒋德明, 马凡华, 杨迪.预混湍流火焰结构的分形特征[J].西安交通大学学报, 1999, 33(2):22-24. DOI: 10.3321/j.issn:0253-987X.1999.02.006
Jiang D M, Ma F H, Yang D. The fractal nature of turbulent premixed flame structure[J]. Journal of Xi'an Jiaotong University, 1999, 33(2):22-24. DOI: 10.3321/j.issn:0253-987X.1999.02.006
|
[7] |
Hiraoka K, Minamoto Y, Shimura M, et al. A fractal dynamic SGS combustion model for large eddy simulation of turbulent premixed flames[J]. Combustion Sciences & Technology, 2016, 188(9):1472-1495. http://cn.bing.com/academic/profile?id=1a654b048d5b04f46fa3503d1730f86a&encoded=0&v=paper_preview&mkt=zh-cn
|
[8] |
Cheng L W, Zhong F Q, Wang Z P, et al. Experimental study of ignition and flame characteristics of surrogate of cracked hydrocarbon fuels in supersonic crossflow[R]. AIAA-2017-2295, 2017.
|
[9] |
程柳维, 仲峰泉, 王知溥, 等.超声速燃烧室乙烯/氢混合燃料点火及火焰形态的实验研究[C].第九届全国高超声速科技学术会议, 西安, 2016.
Cheng L W, Zhong F Q, Wang Z P, et al. Experimental study of ignition and flame shape of blended fuel of ethylene/hydrogen in a supersonic combustor[C]//Proc of the 9th National Conference on Hypersonic Science and Technology. 2016.
|
[10] |
王玲玲, 金忠青.分形理论及其在紊流研究中的应用[J].河海大学学报, 1997, 25(1):1-5. DOI: 10.3321/j.issn:1000-1980.1997.01.001
Wang L L, Jin Z Q. Fractal theory and its application to turbulence study[J]. Journal of Hohai University, 1997, 25(1):1-5. DOI: 10.3321/j.issn:1000-1980.1997.01.001
|
[11] |
沈学会, 陈举华.分形与混沌理论在湍流研究之中的应用[J].河南科技大学学报:自然科学版, 2005, 26(1):27-30. http://www.cnki.com.cn/Article/CJFDTotal-LYGX200501007.htm
Shen X H, Chen J H. Application of fractal and chaos theory in turbulence study[J]. Journal of Henan University of Science and Technology:Natural Science, 2005, 26(1):27-30. http://www.cnki.com.cn/Article/CJFDTotal-LYGX200501007.htm
|
[12] |
孟艳玲.汽油机燃烧火焰的分形特征研究[D].天津: 天津大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10056-2008184277.htm
Meng Y L. Study on fractal characteristics of combustion flame in gasoline engine[D]. Tianjin: Tianjin University, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10056-2008184277.htm
|
[13] |
Fureby C. A fractal flame-wrinkling large eddy simulation mo-del for premixed turbulent combustion[J]. Proceedings of the Combustion Institute, 2005, 30(1):593-601. https://www.sciencedirect.com/science/article/pii/S0082078404001316
|
[14] |
Cintosun E, Smallwood G L, Gülder Ömer L. Flame surface fratcal characteristics in premixed turbulent combustionat high turbulence intensities[J]. AIAA Journal, 2007, 45(11):2785-2789. DOI: 10.2514/1.29533
|
[15] |
Gouldin F C. An application of fractals to modeling premixed turbulent flames[J]. Combustion and Flame, 1987, 68(3):249-266. DOI: 10.1016/0010-2180(87)90003-4
|
[16] |
Peters N. The turbulent burning velocity for large-scale and small-scale turbulence[J]. Journal of Fluid Mechanics, 1999, 384:107-132. DOI: 10.1017/S0022112098004212
|
[17] |
Cant R S, Mastorakos E. An introduction to turbulent reacting flows[M]. UK:Imperical College Press, 2007.
|
[1] | XIA Huihui, ZHANG Shunping, YANG Shunhua, KAN Ruifeng, XU Zhenyu, RUAN Jun, YAO Lu, HUANG An. Two-dimensional distribution measurement of direct-connect scramjet combustion flow field based on TDLAS multi-absorption lines[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 80-86. DOI: 10.11729/syltlx20220103 |
[2] | CHENG Xiaoqi, FAN Ziye, TANG Zhanqi, BAI Jianxia, JIANG Nan. Experimental investigation of the spatial distribution of uniform momentum zones in wall-bounded flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 21-28. DOI: 10.11729/syltlx20230132 |
[3] | LI Long, PENG Lei, ZHAO Wei. Study of liquid spreading and particle size distribution during the preparation of aluminum alloy powder by rotary disc atomization[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230059 |
[4] | CHEN Shuyue, GUO Xiangdong, WANG Zixu, LIU senyun, WU Yingchun. Preliminary research on size measurement of supercooled large droplet in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 22-29. DOI: 10.11729/syltlx20200104 |
[5] | LI Fangji, ZHAO Qing, FAN Jianchao, JIA Shuang, RONG Xiangsen, GUO Min. Technology research and test verification of distributed flow regulator for inlet test in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 74-80. DOI: 10.11729/syltlx20190022 |
[6] | Ma Wenyong, Wang Guanya, Zheng Xi, Chen Tie, Li Zhi, Zhang Chengyuan, Fang Pingzhi. Effects of end condition on aerodynamic force distribution on a skewed circular cylinder[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 43-50. DOI: 10.11729/syltlx20180050 |
[7] | Liu Lu, Cao Wei. Stability and transition prediction of the hypersonic plate boundary layers for wall temperature distribution[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 41-48. DOI: 10.11729/syltlx20180107 |
[8] | Wu Liyin, Zhang Kouli, Li Chenyang, Li Qinglian. Model for three-dimensional distribution of liquid fuel in supersonic crossflows[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 20-30. DOI: 10.11729/syltlx20170172 |
[9] | Zhang Jing, Zheng Xu, Wang Leilei, Cui Haihang, Li Zhanhua. Experimental study on the characteristic motion of bubble propelled hollow Janus microspheres[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 61-66. DOI: 10.11729/syltlx20160152 |
[10] | An Yali, Xu Zhipeng, Liu Tiejun, Xie Dailiang. Experimental study on flowrate measurement of air-water two phase flow by double-cone flowmeter[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 67-73. DOI: 10.11729/syltlx20160044 |
1. |
刘奇,刘常青,李增军. 超声速风洞模型冲击载荷抑制装置设计. 航空动力学报. 2023(02): 364-370 .
![]() | |
2. |
王珏,王誉超,季辰. 超声速风洞带舵机状态全尺寸舵颤振亚临界试验. 空天防御. 2023(02): 77-83 .
![]() | |
3. |
Chuanwei XUAN,Jinglong HAN,Bing ZHANG,Haiwei YUN,Xiaomao CHEN. Hypersonic flutter and flutter suppression system of a wind tunnel model. Chinese Journal of Aeronautics. 2019(09): 2121-2132 .
![]() |
|
4. |
周波,涂清,高川. 超声速风洞模型插入机构控制系统设计. 测控技术. 2019(12): 122-125+135 .
![]() | |
5. |
周波,高川,杨洋. 2m超声速风洞流场变速压控制方法研究. 实验流体力学. 2019(06): 72-77 .
![]() | |
6. |
季辰,赵玲,朱剑,刘子强,李锋. 高超声速风洞连续变动压舵面颤振试验. 实验流体力学. 2017(06): 37-44 .
![]() |