Cheng Liuwei, Zhong Fengquan, Du Mengmeng, Gu Hongbin, Zhang Xinyu. Study of characterization methods of supersonic combustion flame based on fractal geometry[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 97-102. DOI: 10.11729/syltlx20180084
Citation: Cheng Liuwei, Zhong Fengquan, Du Mengmeng, Gu Hongbin, Zhang Xinyu. Study of characterization methods of supersonic combustion flame based on fractal geometry[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 97-102. DOI: 10.11729/syltlx20180084

Study of characterization methods of supersonic combustion flame based on fractal geometry

More Information
  • Received Date: May 28, 2018
  • Revised Date: July 16, 2018
  • Fractal geometry is a new subject of graphics. By means of fractal geometry, ir-regular graphics can be studied, the self-similarity characteristics of graphs can be revealed, and quantitative data of graph self-similarity can be given. In this paper, the fractal geometry is used to analyze the flame morphology in the supersonic airflow, and the variation law of the flame fractal dimension under the condition of different equivalent ratios and fuel component molar ratios is quantitatively analyzed. The relationship between the velocity of the turbulent flame propagation and the fractal dimension of the flame boundary is studied. In this paper, the flame CH* self-luminescent transient image obtained by the high-speed photography is used to record the flame morphology of different fuels in the Mach number 2.5 supersonic airflow. The experimental results show that the fractal dimension of the frontal boundary of the supersonic combustion turbulent flame increases approximately linearly with the increase of the equivalent ratio, and increases with the increase of the hydrogen component in the fuel.
  • [1]
    Yoshikawa I, Shim Y S, Nada Y, et al. A dynamic SGS combustion model based on fractal characteristics of turbulent premixed flames[J]. Proceedings of the Combustion Institute, 2013, 34(1):1373-1381. http://cn.bing.com/academic/profile?id=50f9c3e2e8a784f6efb68f3d9e5b7e53&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    Mandelbrot B B. The fractal geometry of nature[M]. New York:Times Books, 1982.
    [3]
    Sreenivasan K R, Meneveau C. The fractal facets of turbulence[J]. Journal of Fluid Mechanics, 1986, 173:357-386. DOI: 10.1017/S0022112086001209
    [4]
    赵玉新, 易仕和, 田立丰, 等.超声速湍流混合层实验图像的分形度量[J].中国科学(G辑:物理学力学天文学), 2008, 38(5):562-571. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200805012.htm

    Zhao Y X, Yi S H, Tian L F, et al. Fractal measurement of experimental images of supersonic turbulent mixing layer[J]. Science in China (Series G:Physics, Mechanics & Astronomy), 2008, 38(5):562-571. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200805012.htm
    [5]
    杨宏旻, 顾璠, 刘勇, 等.湍流预混火焰传播速度的分形模型研究[J].工程热物理学报, 2001, 22(4):507-510. DOI: 10.3321/j.issn:0253-231X.2001.04.032

    Yang H M, Gu P, Liu Y, et al. The investigation on fractal model of the propagating speed of turbulent premixed flame[J]. Journal of Engineering Thermophysics, 2001, 22(4):507-510. DOI: 10.3321/j.issn:0253-231X.2001.04.032
    [6]
    蒋德明, 马凡华, 杨迪.预混湍流火焰结构的分形特征[J].西安交通大学学报, 1999, 33(2):22-24. DOI: 10.3321/j.issn:0253-987X.1999.02.006

    Jiang D M, Ma F H, Yang D. The fractal nature of turbulent premixed flame structure[J]. Journal of Xi'an Jiaotong University, 1999, 33(2):22-24. DOI: 10.3321/j.issn:0253-987X.1999.02.006
    [7]
    Hiraoka K, Minamoto Y, Shimura M, et al. A fractal dynamic SGS combustion model for large eddy simulation of turbulent premixed flames[J]. Combustion Sciences & Technology, 2016, 188(9):1472-1495. http://cn.bing.com/academic/profile?id=1a654b048d5b04f46fa3503d1730f86a&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    Cheng L W, Zhong F Q, Wang Z P, et al. Experimental study of ignition and flame characteristics of surrogate of cracked hydrocarbon fuels in supersonic crossflow[R]. AIAA-2017-2295, 2017.
    [9]
    程柳维, 仲峰泉, 王知溥, 等.超声速燃烧室乙烯/氢混合燃料点火及火焰形态的实验研究[C].第九届全国高超声速科技学术会议, 西安, 2016.

    Cheng L W, Zhong F Q, Wang Z P, et al. Experimental study of ignition and flame shape of blended fuel of ethylene/hydrogen in a supersonic combustor[C]//Proc of the 9th National Conference on Hypersonic Science and Technology. 2016.
    [10]
    王玲玲, 金忠青.分形理论及其在紊流研究中的应用[J].河海大学学报, 1997, 25(1):1-5. DOI: 10.3321/j.issn:1000-1980.1997.01.001

    Wang L L, Jin Z Q. Fractal theory and its application to turbulence study[J]. Journal of Hohai University, 1997, 25(1):1-5. DOI: 10.3321/j.issn:1000-1980.1997.01.001
    [11]
    沈学会, 陈举华.分形与混沌理论在湍流研究之中的应用[J].河南科技大学学报:自然科学版, 2005, 26(1):27-30. http://www.cnki.com.cn/Article/CJFDTotal-LYGX200501007.htm

    Shen X H, Chen J H. Application of fractal and chaos theory in turbulence study[J]. Journal of Henan University of Science and Technology:Natural Science, 2005, 26(1):27-30. http://www.cnki.com.cn/Article/CJFDTotal-LYGX200501007.htm
    [12]
    孟艳玲.汽油机燃烧火焰的分形特征研究[D].天津: 天津大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10056-2008184277.htm

    Meng Y L. Study on fractal characteristics of combustion flame in gasoline engine[D]. Tianjin: Tianjin University, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10056-2008184277.htm
    [13]
    Fureby C. A fractal flame-wrinkling large eddy simulation mo-del for premixed turbulent combustion[J]. Proceedings of the Combustion Institute, 2005, 30(1):593-601. https://www.sciencedirect.com/science/article/pii/S0082078404001316
    [14]
    Cintosun E, Smallwood G L, Gülder Ömer L. Flame surface fratcal characteristics in premixed turbulent combustionat high turbulence intensities[J]. AIAA Journal, 2007, 45(11):2785-2789. DOI: 10.2514/1.29533
    [15]
    Gouldin F C. An application of fractals to modeling premixed turbulent flames[J]. Combustion and Flame, 1987, 68(3):249-266. DOI: 10.1016/0010-2180(87)90003-4
    [16]
    Peters N. The turbulent burning velocity for large-scale and small-scale turbulence[J]. Journal of Fluid Mechanics, 1999, 384:107-132. DOI: 10.1017/S0022112098004212
    [17]
    Cant R S, Mastorakos E. An introduction to turbulent reacting flows[M]. UK:Imperical College Press, 2007.
  • Related Articles

    [1]DUAN Pengyu, CHEN Xi. Composite drag control and energy flux analysis for wall turbulence[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 1-10. DOI: 10.11729/syltlx20230126
    [2]MENG Fanzhe, Qin Liping, XIE Luo, SHI Pengfei, HU Haibao. Experimental study on drag reduction characteristics of biopolysaccharide solution[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 56-61. DOI: 10.11729/syltlx20210089
    [3]XU Shengxuan, ZHAO Wenbin, LI Mingyi, LIN Yuying, LI Changfeng. Experimental study on pipe flow transition of XG solution and drag reduction characteristics with different mass fractions of NaCl[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 34-40. DOI: 10.11729/syltlx20200041
    [4]ZHANG Wenyun, HU Haibao, WEN Jun, CAO Gang, REN Liuzhen. Advances in experimental research on Taylor-Couette flow characteristics and drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 104-111. DOI: 10.11729/syltlx20190163
    [5]Zhu Bo, Zhao Wenbin, Li Mingyi, Yuan Yichao, Yu Wenhui, Li Changfeng. Experimental study on drag reduction and anti-shearing characteristics of xanthan gum solution with NaCl[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 61-66. DOI: 10.11729/syltlx20180035
    [6]CHEN Ying, CHEN Ying-chun, HUANG Wei, HU Ren-yu, YAO Kai-ming, WANG Fu-xin. Experiment investigation of drag reduction using riblets for a slender body[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 42-45. DOI: 10.3969/j.issn.1672-9897.2012.02.009
    [7]GENG Zi-hai, LIU Shuang-ke, WANG Xun-nian, ZHANG Yang. Test study of drag reduction technique by hybrid laminar flow control with two-dimension airfoil[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 46-50. DOI: 10.3969/j.issn.1672-9897.2010.01.009
    [8]YU Yong-sheng, WEI Qing-ding. Experiments on the drag-reduction of non-wetting materials[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 60-66. DOI: 10.3969/j.issn.1672-9897.2005.02.012
    [9]An experimental investigation of grid fin drag reduction techniques[J]. Journal of Experiments in Fluid Mechanics, 2001, 15(4): 7-11. DOI: 10.3969/j.issn.1672-9897.2001.04.002
    [10]CHEN Shaosong, DING Ze-sheng, LUO Rong, CAO Ding-gui. An investigation on characteristics of base drag reduction with base bleed in subsonic and transonic speeds[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(4): 41-45. DOI: 10.3969/j.issn.1672-9897.2000.04.008

Catalog

    Article Metrics

    Article views (205) PDF downloads (15) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close