Citation: | Cheng Liuwei, Zhong Fengquan, Du Mengmeng, Gu Hongbin, Zhang Xinyu. Study of characterization methods of supersonic combustion flame based on fractal geometry[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 97-102. DOI: 10.11729/syltlx20180084 |
[1] |
Yoshikawa I, Shim Y S, Nada Y, et al. A dynamic SGS combustion model based on fractal characteristics of turbulent premixed flames[J]. Proceedings of the Combustion Institute, 2013, 34(1):1373-1381. http://cn.bing.com/academic/profile?id=50f9c3e2e8a784f6efb68f3d9e5b7e53&encoded=0&v=paper_preview&mkt=zh-cn
|
[2] |
Mandelbrot B B. The fractal geometry of nature[M]. New York:Times Books, 1982.
|
[3] |
Sreenivasan K R, Meneveau C. The fractal facets of turbulence[J]. Journal of Fluid Mechanics, 1986, 173:357-386. DOI: 10.1017/S0022112086001209
|
[4] |
赵玉新, 易仕和, 田立丰, 等.超声速湍流混合层实验图像的分形度量[J].中国科学(G辑:物理学力学天文学), 2008, 38(5):562-571. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200805012.htm
Zhao Y X, Yi S H, Tian L F, et al. Fractal measurement of experimental images of supersonic turbulent mixing layer[J]. Science in China (Series G:Physics, Mechanics & Astronomy), 2008, 38(5):562-571. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200805012.htm
|
[5] |
杨宏旻, 顾璠, 刘勇, 等.湍流预混火焰传播速度的分形模型研究[J].工程热物理学报, 2001, 22(4):507-510. DOI: 10.3321/j.issn:0253-231X.2001.04.032
Yang H M, Gu P, Liu Y, et al. The investigation on fractal model of the propagating speed of turbulent premixed flame[J]. Journal of Engineering Thermophysics, 2001, 22(4):507-510. DOI: 10.3321/j.issn:0253-231X.2001.04.032
|
[6] |
蒋德明, 马凡华, 杨迪.预混湍流火焰结构的分形特征[J].西安交通大学学报, 1999, 33(2):22-24. DOI: 10.3321/j.issn:0253-987X.1999.02.006
Jiang D M, Ma F H, Yang D. The fractal nature of turbulent premixed flame structure[J]. Journal of Xi'an Jiaotong University, 1999, 33(2):22-24. DOI: 10.3321/j.issn:0253-987X.1999.02.006
|
[7] |
Hiraoka K, Minamoto Y, Shimura M, et al. A fractal dynamic SGS combustion model for large eddy simulation of turbulent premixed flames[J]. Combustion Sciences & Technology, 2016, 188(9):1472-1495. http://cn.bing.com/academic/profile?id=1a654b048d5b04f46fa3503d1730f86a&encoded=0&v=paper_preview&mkt=zh-cn
|
[8] |
Cheng L W, Zhong F Q, Wang Z P, et al. Experimental study of ignition and flame characteristics of surrogate of cracked hydrocarbon fuels in supersonic crossflow[R]. AIAA-2017-2295, 2017.
|
[9] |
程柳维, 仲峰泉, 王知溥, 等.超声速燃烧室乙烯/氢混合燃料点火及火焰形态的实验研究[C].第九届全国高超声速科技学术会议, 西安, 2016.
Cheng L W, Zhong F Q, Wang Z P, et al. Experimental study of ignition and flame shape of blended fuel of ethylene/hydrogen in a supersonic combustor[C]//Proc of the 9th National Conference on Hypersonic Science and Technology. 2016.
|
[10] |
王玲玲, 金忠青.分形理论及其在紊流研究中的应用[J].河海大学学报, 1997, 25(1):1-5. DOI: 10.3321/j.issn:1000-1980.1997.01.001
Wang L L, Jin Z Q. Fractal theory and its application to turbulence study[J]. Journal of Hohai University, 1997, 25(1):1-5. DOI: 10.3321/j.issn:1000-1980.1997.01.001
|
[11] |
沈学会, 陈举华.分形与混沌理论在湍流研究之中的应用[J].河南科技大学学报:自然科学版, 2005, 26(1):27-30. http://www.cnki.com.cn/Article/CJFDTotal-LYGX200501007.htm
Shen X H, Chen J H. Application of fractal and chaos theory in turbulence study[J]. Journal of Henan University of Science and Technology:Natural Science, 2005, 26(1):27-30. http://www.cnki.com.cn/Article/CJFDTotal-LYGX200501007.htm
|
[12] |
孟艳玲.汽油机燃烧火焰的分形特征研究[D].天津: 天津大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10056-2008184277.htm
Meng Y L. Study on fractal characteristics of combustion flame in gasoline engine[D]. Tianjin: Tianjin University, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10056-2008184277.htm
|
[13] |
Fureby C. A fractal flame-wrinkling large eddy simulation mo-del for premixed turbulent combustion[J]. Proceedings of the Combustion Institute, 2005, 30(1):593-601. https://www.sciencedirect.com/science/article/pii/S0082078404001316
|
[14] |
Cintosun E, Smallwood G L, Gülder Ömer L. Flame surface fratcal characteristics in premixed turbulent combustionat high turbulence intensities[J]. AIAA Journal, 2007, 45(11):2785-2789. DOI: 10.2514/1.29533
|
[15] |
Gouldin F C. An application of fractals to modeling premixed turbulent flames[J]. Combustion and Flame, 1987, 68(3):249-266. DOI: 10.1016/0010-2180(87)90003-4
|
[16] |
Peters N. The turbulent burning velocity for large-scale and small-scale turbulence[J]. Journal of Fluid Mechanics, 1999, 384:107-132. DOI: 10.1017/S0022112098004212
|
[17] |
Cant R S, Mastorakos E. An introduction to turbulent reacting flows[M]. UK:Imperical College Press, 2007.
|
[1] | DUAN Pengyu, CHEN Xi. Composite drag control and energy flux analysis for wall turbulence[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 1-10. DOI: 10.11729/syltlx20230126 |
[2] | MENG Fanzhe, Qin Liping, XIE Luo, SHI Pengfei, HU Haibao. Experimental study on drag reduction characteristics of biopolysaccharide solution[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 56-61. DOI: 10.11729/syltlx20210089 |
[3] | XU Shengxuan, ZHAO Wenbin, LI Mingyi, LIN Yuying, LI Changfeng. Experimental study on pipe flow transition of XG solution and drag reduction characteristics with different mass fractions of NaCl[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 34-40. DOI: 10.11729/syltlx20200041 |
[4] | ZHANG Wenyun, HU Haibao, WEN Jun, CAO Gang, REN Liuzhen. Advances in experimental research on Taylor-Couette flow characteristics and drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 104-111. DOI: 10.11729/syltlx20190163 |
[5] | Zhu Bo, Zhao Wenbin, Li Mingyi, Yuan Yichao, Yu Wenhui, Li Changfeng. Experimental study on drag reduction and anti-shearing characteristics of xanthan gum solution with NaCl[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 61-66. DOI: 10.11729/syltlx20180035 |
[6] | CHEN Ying, CHEN Ying-chun, HUANG Wei, HU Ren-yu, YAO Kai-ming, WANG Fu-xin. Experiment investigation of drag reduction using riblets for a slender body[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 42-45. DOI: 10.3969/j.issn.1672-9897.2012.02.009 |
[7] | GENG Zi-hai, LIU Shuang-ke, WANG Xun-nian, ZHANG Yang. Test study of drag reduction technique by hybrid laminar flow control with two-dimension airfoil[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 46-50. DOI: 10.3969/j.issn.1672-9897.2010.01.009 |
[8] | YU Yong-sheng, WEI Qing-ding. Experiments on the drag-reduction of non-wetting materials[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 60-66. DOI: 10.3969/j.issn.1672-9897.2005.02.012 |
[9] | An experimental investigation of grid fin drag reduction techniques[J]. Journal of Experiments in Fluid Mechanics, 2001, 15(4): 7-11. DOI: 10.3969/j.issn.1672-9897.2001.04.002 |
[10] | CHEN Shaosong, DING Ze-sheng, LUO Rong, CAO Ding-gui. An investigation on characteristics of base drag reduction with base bleed in subsonic and transonic speeds[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(4): 41-45. DOI: 10.3969/j.issn.1672-9897.2000.04.008 |