Song Junhao, Guo Dilong, Yang Guowei, Yang Qiansuo. Experimental investigation on the aerodynamics of tunnel-passing for high speed train with a moving model rig[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 39-45. DOI: 10.11729/syltlx20170002
Citation: Song Junhao, Guo Dilong, Yang Guowei, Yang Qiansuo. Experimental investigation on the aerodynamics of tunnel-passing for high speed train with a moving model rig[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 39-45. DOI: 10.11729/syltlx20170002

Experimental investigation on the aerodynamics of tunnel-passing for high speed train with a moving model rig

More Information
  • Received Date: January 02, 2017
  • Revised Date: August 23, 2017
  • When a high speed train enters a tunnel, a compressed wave occurs and propagates along the tunnel to the tunnel port, and transforms to be a micro pressure wave. Using the moving model rig experiment system, pressure waves and the micro pressure wave were measured in the double-track tunnel (60m in length) within the speed range of 200-350km/h. Firstly, the validity of experimental data was verified. Secondly, the reduction principle of the initial compression wave propagating in the tunnel and the relationship between the micro pressure wave and the train speed were drawn out. The effect of the streamlined nose shape on the micro pressure wave was studied at last. The experimental results show that in the speed ranges, the dimensionless values of the pressure wave and micro pressure wave are the same with different speeds. However, the relationship between the micro pressure wave and the streamlined nose length is only analyzed qualitatively, with quantitative relationship difficult to determine.
  • [1]
    杨国伟, 魏宇杰, 赵桂林, 等.高速列车的关键力学问题[J].力学进展, 2015, 45:201507. DOI: 10.6052/1000-0992-14-002

    Yang G W, Wei Y J, Zhao G L, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45:201507. DOI: 10.6052/1000-0992-14-002
    [2]
    Yoon T S, Lee S, Hwang J H, et al. Prediction and validation on the sonic boom by a high-speed train entering a tunnel[J]. Journal of Sound and Vibration, 2001, 247(2):195-211. DOI: 10.1006/jsvi.2000.3482
    [3]
    Raghunathan R S, Kim H D, Setoguchi T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38:469-514. DOI: 10.1016/S0376-0421(02)00029-5
    [4]
    马伟斌, 张千里, 程爱君, 等.高速铁路隧道洞口微气压波影响因素与变化规律研究[J].铁道学报, 2013, (5):97-102. http://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201305017.htm

    Ma W B, Zhang Q L, Cheng A J, et al. Study on influence factors and changing law of micro-pressure waves at tunnel portals of high-speed railways[J]. Journal of the China Railway Society, 2013, (5):97-102. http://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201305017.htm
    [5]
    Howe M S. Review of the theory of the compression wave generated when a high-speed train enters a tunnel[C]//Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 1999, 213(2):89-104.
    [6]
    Auvity B, Bellenoue M, Kageyama T. Experimental study of the unsteady aerodynamic field outside a tunnel during a train entry[J]. Experiments in Fluids, 2001, 30(2):221-228. DOI: 10.1007/s003480000159
    [7]
    杨志刚, 谭晓明, 梁习锋, 等.高速列车过隧气压爆波的声学特征与传感器选型[J].中南大学学报(自然科学版), 2014, 45:1329-1333. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201404043.htm

    Yang Z G, Tan X M, Liang X F, et al. Acoustical characteristics of micro-pressure wave and sensor selection[J]. Journal of Central South University Science and Technology, 2014, 45:1329-1333. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201404043.htm
    [8]
    Johnson T, Dalley S. 1/25 scale moving model tests for the TRANSAERO Project[M]. Berlin Heidelberg:Springer, 2002.
    [9]
    Zhou D, Tian H, Zhang J, et al. Pressure transients induced by a high-speed train passing through a station[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 135:1-9. DOI: 10.1016/j.jweia.2014.09.006
    [10]
    Bellenoue M, Moriniere V, Kageyama T. Experimental 3-D simulation of the compression wave, due to train-tunnel entry[J]. Journal of Fluids and Structures, 2002, 16(5):581-595. DOI: 10.1006/jfls.2002.0444
    [11]
    Ricco P, Baron A, Molteni P. Nature of pressure waves induced by a high-speed train travelling through a tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(8):781-808. DOI: 10.1016/j.jweia.2007.01.008
    [12]
    DoiT, Ogawa T, Masubuchi T, et al. Development of an experimental facility for measuring pressure waves generated by high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(1):55-61. DOI: 10.1016/j.jweia.2009.09.002
    [13]
    Yang Q S, Song J H, Li D, et al. Train model acceleration and deceleration[J]. Science China Technological Sciences, 2013, 56(3):642-647. DOI: 10.1007/s11431-012-5101-5
    [14]
    Yang Q S, Song J H, Yang G W. A moving model rig with a scale ratio of 1/8 for high speed train aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 152:50-58. DOI: 10.1016/j.jweia.2016.03.002
    [15]
    梅元贵, 周朝辉, 耿烽, 等.高速铁路隧道初始压缩波一维流动模型的数值分析方法[J].空气动力学学报, 2006, 24(4):508-512, 519. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200604021.htm

    Mei Y G, Zhou C H, Geng F, et al. Numerical method of initial compression waves produced by a high-speed train entering a tunnel-hood based on one dimensional unsteady compressible flow model[J]. Acta Aerodynamica Sinica, 2006, 24(4):508-512, 519. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200604021.htm
    [16]
    Takayama K, Sasoh A, Onodera O, et al. Experimental investigation on tunnel sonic boom[J]. Shock Waves, 1995, 5(3):127-138. DOI: 10.1007/BF01435520
    [17]
    Ozawa S, Maeda T, Matsumura T, et al. Countermeasures to reduce micro-pressure waves radiating from exits of Shinkansen tunnels[C]//Proceedings of the Seventh International Conference on the Aerodynamics and Ventilation of Vehicle Tunnels, Brighton, UK, 1991:253-266.
  • Related Articles

    [1]ZHU Dongyu, FENG Qiang, Han Xiaotao, Yang Ximing, Cui Xiaochun, Yuan Li. Researches on a large natural moveable icing wind tunnel and test methods[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 52-61. DOI: 10.11729/syltlx20210100
    [2]GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, YANG Shengke, LIN Wei. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. DOI: 10.11729/syltlx20190113
    [3]ZHU Xinxin, LONG Yongsheng, SHI Youan, YANG Qingtao, ZHOU Ping, ZHAO Shunhong. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 87-93. DOI: 10.11729/syltlx20190062
    [4]Zhang Hui, Fan Litao. Correlation analysis of large low speed wind tunnel test on CHN-T1 calibration model[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 106-111. DOI: 10.11729/syltlx20180046
    [5]Gao Guochi, Li Baoliang, Ding Li, Wang Zixu, Ni Zhangsong. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 95-101. DOI: 10.11729/syltlx20180064
    [6]Wang Zixu, Shen Hao, Guo Long, Guo Xiangdong, Ni Zhangsong. Cloud calibration method of 3m×2m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67. DOI: 10.11729/syltlx20170163
    [7]Zhou Feng, Feng Lijuan, Xu Chaojun, Zhao Keliang, Han Zhirong. Determination and verification of critical ice shape for the certification of civil aircraft[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 8-13. DOI: 10.11729/syltlx20160019
    [8]Shen Chen, Yang Zhigang. Numerical methods exploration and experimental validation of Ahmed model with consideration of fluid-solid-interaction effect[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 37-42. DOI: 10.11729/syltlx20130017
    [9]YUAN Hong-gang, YANG Yong-dong, ZHANG Gui-chuan, HUANG Ming-qi. Improving techniques and validating of rotor and fuselage compound model test stand[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4): 87-90. DOI: 10.3969/j.issn.1672-9897.2012.04.018
    [10]GUO Shan-guang, LIU Jun, JIN Liang, LUO Shi-bin. Numerical simulation and experiment validation on shock oscillations of inner flow path of hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 7-11. DOI: 10.3969/j.issn.1672-9897.2012.01.002
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views (383) PDF downloads (16) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close