Citation: | Liu Pei, Li Geng, Zhao Li. Experimental study on cold separation flow in large expansion ratio nozzle[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 62-66. DOI: 10.11729/syltlx20160067 |
[1] |
Nave L H, Coffey G A. Sea level side loads in high-area-ratio rocket engines[R]. AIAA-73-1284, 1973.
|
[2] |
Terhardt M, Hagemann G. Flow separation and side-load behavior of the Vulcain engine[R]. AIAA-99-2762, 1999.
|
[3] |
Yasuhide W, Norio S. LE-7A engine nozzle flow separation phenomenon and the possibility of RSS suppression by the step inside the nozzle[R]. AIAA-2004-4014, 2004.
|
[4] |
Antonio M J, Juan S J. Numerical study of the start-up process in an optimized rocket nozzle[J]. Aerospace Science and Technology, 2008, 12 (12): 485-489. https://www.researchgate.net/publication/239407564_Three-dimensional_simulation_of_the_self-oscillating_flow_and_side-loads_in_an_over-expanded_subscale_rocket_nozzle
|
[5] |
Vicent L, Heuy D K, Toshiaki S, et al. Numerical investigation of transient side-loads in the start-up process of a rocket nozzle[J]. Journal of Mechanical Science and Technology, 2010, 24 (2): 593-399. DOI: 10.1007/s12206-009-1215-5
|
[6] |
Gross A, Weiland C. Numerical simulation of hot gas nozzle flows[J]. Journal of Propulsion and Power, 2004, 20 (5): 879-891. DOI: 10.2514/1.5001
|
[7] |
Joseph H R, David M M, Andrew M B. Nozzle side load testing and analysis at Marshall Space Flight Center[R]. AIAA-2009-4856, 2009.
|
[8] |
Hagemann G, Frey M. Shock pattern in the plume of rocket nozzles: needs for design consideration[J]. Shock Waves, 2008, 17 (6): 387-395. DOI: 10.1007/s00193-008-0129-y
|
[9] |
Nasuti F, Onofri M. Shock structure in separated nozzle flows[J]. Shock Waves, 2009, 19 (13): 229-237. https://www.researchgate.net/publication/225780862_Shock_Structure_in_Separated_Nozzle_Flows
|
[10] |
Frey M, Stark R, Ciezki H K, et al. Subscale nozzle testing at the p6.2 nozzle stand[R]. AIAA-2000-3777, 2000.
|
[11] |
Kwan W, Stark R. Flow separation phenomena in subscale rocket nozzles[R]. AIAA-2002-4229, 2002.
|
[12] |
王艺杰, 鲍福廷, 杜佳佳. 固体火箭发动机喷管分离流动数值模拟及试验研究[J]. 固体火箭技术, 2010, 33 (4): 406-408. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201004009.htm
Wang Y J, Bao F T, Du J J. Numerical simulation and expeniment of flow separation in SRM nozzle[J]. Journal of Solid Rocket Technology. 2010, 33 (4): 406-408. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201004009.htm
|
[13] |
胡海峰, 鲍福廷, 蔡强, 等. 大膨胀比火箭发动机喷管分离流动与气动弹性分析[J]. 固体火箭技术, 2011, 34 (6): 711-716. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201106010.htm
Hu H F, Bao F T, Cai Q, ec al. Flow separation and aeroelastic coupling analysis in overexpanded rocket nozzles[J]. Journal of Solid Rocket Technology. 2011, 34 (6): 711-716. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201106010.htm
|
[14] |
杨月诚, 吴朋朋, 高双武, 等. 快速升压过程喷管侧向载荷流固耦合分析[J]. 固体火箭技术. 2012, 35 (4): 463-473. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201204009.htm
Yang Y C, Wu P P, Gao S W, et al. Rapid pressurization side load fluid-structure coupled analysis in SRM nozzle[J]. Journal of Solid Rocket Technology. 2012, 35 (4): 463-473. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201204009.htm
|
[15] |
Östlund J. Flow processes in rocket engine nozzles with focus on flow separation and side-loads[R]. Technical reports from Royal Institute of Technology Department of Mechanics S-100 44 Stockholm, Sweden, 2002.
|
[1] | LIU Jingcheng, LIU Jianhua, ZHANG Yongming. Review of flow stability and natural transition of boundary layers on underwater axisymmetric bodies[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 40-51. DOI: 10.11729/syltlx20230103 |
[2] | CHEN Xiang, ZHAN Jingxia, CHEN Ke, WEI Zhongcheng, CAO Yuan. Unsteady aerodynamic modeling research and virtual flight test verification[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 65-72. DOI: 10.11729/syltlx20210143 |
[3] | LIAN Zhenzeng, ZHANG Hui, YAN Wencheng, KONG Peng. Research on improvement measures of transverse heading of general aircraft based on spoiler[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 34-39. DOI: 10.11729/syltlx20200066 |
[4] | LIU Yu, XIAO Baoguo, WANG Lan, CHEN Weiqiang. Standing stability enhancement method of oblique detonation waves in a confined space and its experimental validation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 109-116. DOI: 10.11729/syltlx20200084 |
[5] | YAO Zhaohui, ZHANG Jingxian, HAO Pengfei. Effect of surface micro/nano-structure on gas-water interface stability and flow drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 73-79. DOI: 10.11729/syltlx20190161 |
[6] | ZHANG Shiyu, ZHAO Junbo, FU Zengliang, LIANG Bin, ZHOU Jiajian. Wind tunnel based virtual flight testing research of F-16 fighter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 49-54, 86. DOI: 10.11729/syltlx20180157 |
[7] | MENG Xuan-shi, CAI Jin-sheng, LUO Shi-jun, LIU Feng. Effects of low dorsal fin on the stability of vortex flow over slender delta wing[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3): 45-49. DOI: 10.3969/j.issn.1672-9897.2012.03.008 |
[8] | SHAO Ya-hui, GE Yao-jun, KE Shi-tang, YANG Yong-xin. Theoretical research on the aerodynamic stability of super-longspan suspension bridge with a main span of 5000m[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 30-36. DOI: 10.3969/j.issn.1672-9897.2012.01.007 |
[9] | SHAO Ya-hui, GE Yao-jun, KE Shi-tang, YANG Yong-xin. Wind tunnel test on the aerodynamic stability of super-long span suspension bridge with a main span of 5000m[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 38-44. DOI: 10.3969/j.issn.1672-9897.2011.06.008 |
[10] | CHEN Bin. Investigation of improving the lateral static stability for the aircraft applied to high-subsonic flow and high angle of attack[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 109-112. DOI: 10.3969/j.issn.1672-9897.2005.01.022 |