Liu Pei, Li Geng, Zhao Li. Experimental study on cold separation flow in large expansion ratio nozzle[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 62-66. DOI: 10.11729/syltlx20160067
Citation: Liu Pei, Li Geng, Zhao Li. Experimental study on cold separation flow in large expansion ratio nozzle[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 62-66. DOI: 10.11729/syltlx20160067

Experimental study on cold separation flow in large expansion ratio nozzle

More Information
  • Received Date: April 16, 2016
  • Revised Date: July 25, 2016
  • In order to investigate flow characteristics of the separation flow, cold flow tests were conducted in a solid rocket motor nozzle with a high expansion ratio under the sea level condition. The influences of the inlet pressure on the pressure of test points upstream and downstream the separation location were revealed in the tests and pressure data were analyzed by means of FFT. The results show that the pressure increases for test points upstream the separation location but decreases for test points downstream the separation location. The pressure is steady and right below the ambient pressure for test points downstream and far away from the separation location. Pressure fluctuations become more evident after separation in comparison with that before separation, and the enhanced pressure fluctuations were mainly low-frequency fluctuations in the range of 50Hz. The research has important reference to the designing and testing of the nozzle with a high expansion ratio.
  • [1]
    Nave L H, Coffey G A. Sea level side loads in high-area-ratio rocket engines[R]. AIAA-73-1284, 1973.
    [2]
    Terhardt M, Hagemann G. Flow separation and side-load behavior of the Vulcain engine[R]. AIAA-99-2762, 1999.
    [3]
    Yasuhide W, Norio S. LE-7A engine nozzle flow separation phenomenon and the possibility of RSS suppression by the step inside the nozzle[R]. AIAA-2004-4014, 2004.
    [4]
    Antonio M J, Juan S J. Numerical study of the start-up process in an optimized rocket nozzle[J]. Aerospace Science and Technology, 2008, 12 (12): 485-489. https://www.researchgate.net/publication/239407564_Three-dimensional_simulation_of_the_self-oscillating_flow_and_side-loads_in_an_over-expanded_subscale_rocket_nozzle
    [5]
    Vicent L, Heuy D K, Toshiaki S, et al. Numerical investigation of transient side-loads in the start-up process of a rocket nozzle[J]. Journal of Mechanical Science and Technology, 2010, 24 (2): 593-399. DOI: 10.1007/s12206-009-1215-5
    [6]
    Gross A, Weiland C. Numerical simulation of hot gas nozzle flows[J]. Journal of Propulsion and Power, 2004, 20 (5): 879-891. DOI: 10.2514/1.5001
    [7]
    Joseph H R, David M M, Andrew M B. Nozzle side load testing and analysis at Marshall Space Flight Center[R]. AIAA-2009-4856, 2009.
    [8]
    Hagemann G, Frey M. Shock pattern in the plume of rocket nozzles: needs for design consideration[J]. Shock Waves, 2008, 17 (6): 387-395. DOI: 10.1007/s00193-008-0129-y
    [9]
    Nasuti F, Onofri M. Shock structure in separated nozzle flows[J]. Shock Waves, 2009, 19 (13): 229-237. https://www.researchgate.net/publication/225780862_Shock_Structure_in_Separated_Nozzle_Flows
    [10]
    Frey M, Stark R, Ciezki H K, et al. Subscale nozzle testing at the p6.2 nozzle stand[R]. AIAA-2000-3777, 2000.
    [11]
    Kwan W, Stark R. Flow separation phenomena in subscale rocket nozzles[R]. AIAA-2002-4229, 2002.
    [12]
    王艺杰, 鲍福廷, 杜佳佳. 固体火箭发动机喷管分离流动数值模拟及试验研究[J]. 固体火箭技术, 2010, 33 (4): 406-408. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201004009.htm

    Wang Y J, Bao F T, Du J J. Numerical simulation and expeniment of flow separation in SRM nozzle[J]. Journal of Solid Rocket Technology. 2010, 33 (4): 406-408. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201004009.htm
    [13]
    胡海峰, 鲍福廷, 蔡强, 等. 大膨胀比火箭发动机喷管分离流动与气动弹性分析[J]. 固体火箭技术, 2011, 34 (6): 711-716. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201106010.htm

    Hu H F, Bao F T, Cai Q, ec al. Flow separation and aeroelastic coupling analysis in overexpanded rocket nozzles[J]. Journal of Solid Rocket Technology. 2011, 34 (6): 711-716. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201106010.htm
    [14]
    杨月诚, 吴朋朋, 高双武, 等. 快速升压过程喷管侧向载荷流固耦合分析[J]. 固体火箭技术. 2012, 35 (4): 463-473. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201204009.htm

    Yang Y C, Wu P P, Gao S W, et al. Rapid pressurization side load fluid-structure coupled analysis in SRM nozzle[J]. Journal of Solid Rocket Technology. 2012, 35 (4): 463-473. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201204009.htm
    [15]
    Östlund J. Flow processes in rocket engine nozzles with focus on flow separation and side-loads[R]. Technical reports from Royal Institute of Technology Department of Mechanics S-100 44 Stockholm, Sweden, 2002.
  • Related Articles

    [1]LIU Jingcheng, LIU Jianhua, ZHANG Yongming. Review of flow stability and natural transition of boundary layers on underwater axisymmetric bodies[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 40-51. DOI: 10.11729/syltlx20230103
    [2]CHEN Xiang, ZHAN Jingxia, CHEN Ke, WEI Zhongcheng, CAO Yuan. Unsteady aerodynamic modeling research and virtual flight test verification[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 65-72. DOI: 10.11729/syltlx20210143
    [3]LIAN Zhenzeng, ZHANG Hui, YAN Wencheng, KONG Peng. Research on improvement measures of transverse heading of general aircraft based on spoiler[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 34-39. DOI: 10.11729/syltlx20200066
    [4]LIU Yu, XIAO Baoguo, WANG Lan, CHEN Weiqiang. Standing stability enhancement method of oblique detonation waves in a confined space and its experimental validation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 109-116. DOI: 10.11729/syltlx20200084
    [5]YAO Zhaohui, ZHANG Jingxian, HAO Pengfei. Effect of surface micro/nano-structure on gas-water interface stability and flow drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 73-79. DOI: 10.11729/syltlx20190161
    [6]ZHANG Shiyu, ZHAO Junbo, FU Zengliang, LIANG Bin, ZHOU Jiajian. Wind tunnel based virtual flight testing research of F-16 fighter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 49-54, 86. DOI: 10.11729/syltlx20180157
    [7]MENG Xuan-shi, CAI Jin-sheng, LUO Shi-jun, LIU Feng. Effects of low dorsal fin on the stability of vortex flow over slender delta wing[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3): 45-49. DOI: 10.3969/j.issn.1672-9897.2012.03.008
    [8]SHAO Ya-hui, GE Yao-jun, KE Shi-tang, YANG Yong-xin. Theoretical research on the aerodynamic stability of super-longspan suspension bridge with a main span of 5000m[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 30-36. DOI: 10.3969/j.issn.1672-9897.2012.01.007
    [9]SHAO Ya-hui, GE Yao-jun, KE Shi-tang, YANG Yong-xin. Wind tunnel test on the aerodynamic stability of super-long span suspension bridge with a main span of 5000m[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 38-44. DOI: 10.3969/j.issn.1672-9897.2011.06.008
    [10]CHEN Bin. Investigation of improving the lateral static stability for the aircraft applied to high-subsonic flow and high angle of attack[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 109-112. DOI: 10.3969/j.issn.1672-9897.2005.01.022
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views (266) PDF downloads (10) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close