YAN S J, DING P J, WANG L S, et al. Two-color-Scheimpflug laser-induced incandescence technique for soot concentration measurements in space-limited combustion field[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240092.
Citation: YAN S J, DING P J, WANG L S, et al. Two-color-Scheimpflug laser-induced incandescence technique for soot concentration measurements in space-limited combustion field[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240092.

Two-color-Scheimpflug laser-induced incandescence technique for soot concentration measurements in space-limited combustion field

More Information
  • Received Date: December 03, 2024
  • Revised Date: January 16, 2025
  • Accepted Date: January 27, 2025
  • Available Online: February 27, 2025
  • To address the need for measuring soot concentration distributions in complex and spatially constrained combustion flow fields, such as the outlet of aero-engine combustors, this study developed the Two-color-Scheimpflug laser-induced incandescence (2C-Scheimpflug LII) technique and a corresponding measurement system, which obtains soot volume fraction distribution images by employing an oblique imaging method. The technique and measurement system validation experiments were first conducted under specific conditions using three typical ethylene/air flames (Mckenna, Gülder, and Santoro). Comparisons with measurement results obtained by other researchers under the same conditions demonstrate the feasibility of the 2C-Scheimpflug LII system. The test results in standard flames show that the low limit of soot volume fraction measurements of our system is approximately 2.0 ppb. Further, the 2C-Scheimpflug LII technique was applied to measure the spatial distribution of soot volume fractions at the transverse cross-section of the outlet and the longitudinal section of a single-sector, dual-swirler aero-engine model combustor. The preliminary results show that the soot volume fraction distribution at the combustor outlet exhibits high instantaneous variability and randomness, while within the combustor, the soot volume fraction displays a V-shaped distribution.

  • [1]
    ECKBRETH A C. Effects of laser-modulated particulate incandescence on Raman scattering diagnostics[J]. Journal of Applied Physics, 1977, 48(11): 4473–4479. doi: 10.1063/1.323458
    [2]
    MELTON L A. Soot diagnostics based on laser heating[J]. Applied Optics, 1984, 23(13): 2201. doi: 10.1364/ao.23.002201
    [3]
    SNELLING D R, SMALLWOOD G J, SAWCHUK R A, et al. In-situ real-time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence[C]//Proc of the SAE Technical Paper Series, SAE International. 2000. doi: 10.4271/2000-01-1994
    [4]
    SNELLING D R, THOMSON K A, SMALLWOOD G J, et al. Spectrally resolved measurement of flame radiation to determine soot temperature and concentration[J]. AIAA Journal, 2002, 40: 1789–1795. doi: 10.2514/3.15261
    [5]
    SMALLWOOD G J, CLAVEL D, GAREAU D, et al. Concurrent quantitative laser-induced incandescence and SMPS measurements of EGR effects on particulate emissions from a TDI diesel engine[C]//Proc of the SAE Technical Paper Series, SAE International. 2002. doi: 10.4271/2002-01-2715
    [6]
    SNELLING D R, SMALLWOOD G J, LIU F S, et al. A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity[J]. Applied Optics, 2005, 44(31): 6773–6785. doi: 10.1364/ao.44.006773
    [7]
    SCHULZ C, KOCK B F, HOFMANN M, et al. Laser-induced incandescence: recent trends and current questions[J]. Applied Physics B, 2006, 83(3): 333–354. doi: 10.1007/s00340-006-2260-8
    [8]
    MICHELSEN H A, SCHULZ C, SMALLWOOD G J, et al. Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications[J]. Progress in Energy and Combustion Science, 2015, 51: 2–48. doi: 10.1016/j.pecs.2015.07.001
    [9]
    刘福水, 花阳, 吴晗, 等. 基于激光诱导炽光法进行碳烟测量的研究进展[J]. 实验流体力学, 2017, 31(1): 1–12. DOI: 10.11729/syltlx20160104

    LIU F S, HUA Y, WU H, et al. Research progress on soot measurement by laser induced incandescence[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 1–12. doi: 10.11729/syltlx20160104
    [10]
    BOIARCIUC A, FOUCHER F, MOUNAÏM-ROUSSELLE C. Soot volume fractions and primary particle size estimate by means of the simultaneous two-color-time-resolved and 2D laser-induced incandescence[J]. Applied Physics B, 2006, 83(3): 413–421. doi: 10.1007/s00340-006-2236-8
    [11]
    ARONSSON U, CHARTIER C, ANDERSSON Ö, et al. Analysis of EGR effects on the soot distribution in a heavy duty diesel engine using time-resolved laser induced incandescence[J]. SAE International Journal of Engines, 2010, 3(2): 137–155. doi: 10.4271/2010-01-2104
    [12]
    MAFFI S, DE IULIIS S, CIGNOLI F, et al. Investigation on thermal accommodation coefficient and soot absorption function with two-color Tire-LII technique in rich premixed flames[J]. Applied Physics B, 2011, 104(2): 357–366. doi: 10.1007/s00340-011-4536-x
    [13]
    BLADH H, JOHNSSON J, OLOFSSON N E, et al. Optical soot characterization using two-color laser-induced incandescence (2C-LII) in the soot growth region of a premixed flat flame[J]. Proceedings of the Combustion Institute, 2011, 33(1): 641–648. doi: 10.1016/j.proci.2010.06.166
    [14]
    王丽雯, 何旭, 王建昕, 等. 用双色法研究汽油机燃烧火焰的温度分布[J]. 燃烧科学与技术, 2007, 13(4): 293–298. DOI: 10.3321/j.issn:1006-8740.2007.04.002

    WANG L W, HE X, WANG J X, et al. Temperature distribution of combustion flame in the gasoline engine by means of two-color method[J]. Journal of Combustion Science and Technology, 2007, 13(4): 293–298. doi: 10.3321/j.issn:1006-8740.2007.04.002
    [15]
    何旭, 马骁, 王建昕. 用激光诱导炽光法定量测量火焰中的碳烟浓度[J]. 燃烧科学与技术, 2009, 15(4): 344–349. DOI: 10.3321/j.issn:1006-8740.2009.04.011

    HE X, MA X, WANG J X. Quantitative soot concentration measurement of flame by laser induced incandescence[J]. Journal of Combustion Science and Technology, 2009, 15(4): 344–349. doi: 10.3321/j.issn:1006-8740.2009.04.011
    [16]
    何旭, 伍岳, 马骁, 等. 内燃机光学诊断试验平台和测试方法综述[J]. 实验流体力学, 2020, 34(3): 1–52. DOI: 10.11729/syltlx20200003

    HE X, WU Y, MA X, et al. A review of optical diagnostic platforms and techniques applied in internal combustion engines[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 1–52. doi: 10.11729/syltlx20200003
    [17]
    CLAUSEN S, ASTRUP P. Oblique laser-sheet visualization[J]. Applied Optics, 1995, 34(19): 3800. doi: 10.1364/ao.34.003800
    [18]
    AXELSSON B, COLLIN R, BENGTSSON P E. Laser-induced incandescence for soot particle size measurements in premixed flat flames[J]. Applied Optics, 2000, 39(21): 3683–3690. doi: 10.1364/ao.39.003683
    [19]
    SNELLING D R, THOMSON K A, SMALLWOOD G J, et al. Two-dimensional imaging of soot volume fraction in laminar diffusion flames[J]. Applied Optics, 1999, 38(12): 2478–2485. doi: 10.1364/ao.38.002478
    [20]
    QUAY B, LEE T W, NI T, et al. Spatially resolved measurements of soot volume fraction using laser-induced incandescence[J]. Combustion and Flame, 1994, 97(3-4): 384–392.
    [21]
    HADEF R, GEIGLE K P, MEIER W, et al. Soot characterization with laser-induced incandescence applied to a laminar premixed ethylene–air flame[J]. International Journal of Thermal Sciences, 2010, 49(8): 1457–1467. doi: 10.1016/j.ijthermalsci.2010.02.014
    [22]
    OLOFSSON N E, SIMONSSON J, TÖRÖK S, et al. Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering[J]. Applied Physics B, 2015, 119(4): 669–683. doi: 10.1007/s00340-015-6067-3
    [23]
    王耀东. 碳氢燃料燃烧中碳烟光学测试方法的研究与应用[D]. 长春: 吉林大学, 2019.

    WANG Y D. Research and application of optical test method for soot in hydrocarbon fuel combustion[D]. Changchun: Jilin University, 2019.
    [24]
    DE IULIIS S, MIGLIORINI F, CIGNOLI F, et al. Peak soot temperature in laser-induced incandescence measurements[J]. Applied Physics B, 2006, 83(3): 397–402. doi: 10.1007/s00340-006-2210-5
    [25]
    SANTORO R J, SEMERJIAN H G, DOBBINS R A. Soot particle measurements in diffusion flames[J]. Combustion and Flame, 1983, 51: 203–218. doi: 10.1016/0010-2180(83)90099-8
    [26]
    McENALLY C S, KÖYLÜ Ü Ö, PFEFFERLE L D, et al. Soot volume fraction and temperature measurements in laminar non-premixed flames using thermocouples[J]. Combustion and Flame, 1997, 109(4): 701–720. doi: 10.1016/S0010-2180(97)00054-0
    [27]
    BLACK J D. Laser-induced incandescence measurements of particles in aeroengine exhausts[C]//Proc of the Environmental Sensing and Applications. 1999. doi: 10.1117/12.364182
    [28]
    BLACK J D, JOHNSON M P. In-situ laser-induced incandescence of soot in an aero-engine exhaust: Comparison with certification style measurements[J]. Aerospace Science and Technology, 2010, 14(5): 329–337. doi: 10.1016/j.ast.2010.02.007
    [29]
    JENKINS T, BARTHOLOMEW J, DEBARBER P, et al. A laser-induced incandescence system for measuring soot flux in aircraft engine exhausts[C]//Proc of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2002. DOI: 10.2514/6.2002-3736.
    [30]
    GEIGLE K P, ZERBS J, HADEF R, et al. Laser-induced incandescence for soot measurements in an aero-engine combustor at pressures up to 20 bar[J]. Applied Physics B, 2019, 125(6): 96. doi: 10.1007/s00340-019-7211-2
    [31]
    MEIER U, HASSA C, GEIGLE K, et al. Parametric study of soot formation in an aeroengine model combustor at elevated pressures by laser-induced incandescence: effect of the fuel phase[C]//Proc of the CEAS European Air and Space Conference. 2007.
    [32]
    MISHRA R K, CHANDEL S. Soot formation and its effect in an aero gas turbine combustor[J]. International Journal of Turbo & Jet-Engines, 2019, 36(1): 61–73. doi: 10.1515/tjj-2016-0062
    [33]
    WANG L S, DING P J, YAN S J, et al. Soot volume fraction measurements in aero-engine model combustor outlet using two-color laser-induced incandescence[J]. Chinese Journal of Aeronautics, 2025, 38(3): 103247. doi: 10.1016/j.cja.2024.09.023
  • Related Articles

    [1]HE Chao, SUN Peng, LIN Jingzhou, XU Xiaobin, CHEN Lei. Design and application of the dynamic stage separation device in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 90-95. DOI: 10.11729/syltlx20200119
    [2]Wang Xiaopeng, Zhang Chen'an, Liu Chunfeng, Wang Famin, Ye Zhengyin. Support interference and correction of cold-flow force test for air-breathing hypersonic vehicle in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 27-33. DOI: 10.11729/syltlx20180116
    [3]Ding Feng, Liu Jun, Shen Chibing, Liu Zhen, Chen Shaohua, Huang Wei. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26. DOI: 10.11729/syltlx20180080
    [4]Xu Xiaobin, Shu Haifeng, Xie Fei, Wang Xiong, Guo Leitao. Research progress on aerodynamic test technology of hypersonic wind tunnel for air-breathing aerocraft[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 29-40. DOI: 10.11729/syltlx20180053
    [5]Deng Fan, Ye Youda, Jiao Zihan, Liu Hui. Research on HIFiRE project's hypersonic vehicle integrated design of aerodynamic and scramjet propulsion[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 73-80. DOI: 10.11729/syltlx20160125
    [6]JIANG Wei, YANG Yun-jun, CHEN He-wu. Investigations on aerodynamics of the spike-tipped hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 28-32,53. DOI: 10.3969/j.issn.1672-9897.2011.06.006
    [7]HE Kai-feng, WANG Qing, QIAN Wei-qi, HE Zheng-chun. Review of aerodynamic and aero-thermodynamic parameter estimation research for hypersonic aircraft[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5): 99-104. DOI: 10.3969/j.issn.1672-9897.2011.05.020
    [8]KHARITONOV A M, ZVEGINTSEV V I, CHIRKASHENKO V F, BRODETSKY M D, MAZHUL I I, VASENEV L G, MUYLAERT J M, KORDULLA W, PAULAT J C. Aerodynamic investigation of aerospace vehicles in the new hypersonic wind tunnel AT-303 at ITAM[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 10-19. DOI: 10.3969/j.issn.1672-9897.2006.04.002
    [9]Heat flux measurement test of the hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(1): 29-32,37. DOI: 10.3969/j.issn.1672-9897.2004.01.007
    [10]The calculations of aerodynamic heating and viscous friction forces on the surface of hypersonic flight vehicle[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(1): 8-20. DOI: 10.3969/j.issn.1672-9897.2002.01.002
  • Cited by

    Periodical cited type(3)

    1. 管新蕾,孙小姣,王维,王利军. 弧形涡流发生器对湍流相干结构及强化换热的影响. 实验流体力学. 2024(04): 104-112 . 本站查看
    2. 朱寅鑫,彭文强,罗振兵,康赢,赵志杰,程盼,刘杰夫. 全叶高合成双射流对大折转角扩压叶栅的影响. 航空学报. 2023(12): 84-95 .
    3. 蔡明,高丽敏,刘哲,黎浩学,陈顺. 亚声速压气机平面叶栅及其改型的吹风试验. 实验流体力学. 2021(02): 36-42 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (34) PDF downloads (6) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close