Citation: | LYU J C, ZHU Z X, Zhao L F, et al. Investigation of hot streak simulation of a triple model combustor coupled with turbine guide vanes[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 21-29. DOI: 10.11729/syltlx20230130 |
In order to investigate the migration laws of hot streak in the coupled system of combustor and turbine, and establish a simulation method for electrically heated swirling hot streak, this research presents construction of a triple model combustor with turbine guide vanes. Besides, a high–temperature dual–axis displacement mechanism–based temperature contact test technology is developed to obtain the temperature distribution at the combustor outlet in the coupled system under three different simulator structures. The experimental results are validated by the numerical method, and the flow field characteristics and the generation law of hot streak in the coupled system under various simulator structures are compared and analyzed. The research findings demonstrate that: 1) The swirl–maintaining extension enhances the mixing effect between the mixed jets and the swirl interference mechanism in the combustor. This effectively reduces swirl dissipation and facilitates the simulation of combustion hot streak. 2) As the length of the extension increases, the swirl intensity at the combustor outlet also increases, leading to changes in the distribution shape of the hot streak at the outlet. These changes influence the migration process of hot streak in the turbine guide vanes.
[1] |
尹洪. 先进燃气轮机燃烧室与透平交互作用的流动传热机理研究[D]. 北京: 清华大学, 2014.
YIN H. Research on the flow and heat transfer of combustor-turbine interactionin advanced gas turbine[D]. Beijing: Tsinghua University, 2014.
|
[2] |
李雪英, 任静, 蒋洪德. 燃烧室温度剖面对静叶端壁冷却的影响[J]. 工程热物理学报, 2015, 36(4): 752–755.
LI X Y, REN J, JIANG H D. The influence of combustor outlet temperature profile on a vane endwall[J]. Journal of Engineering Thermophysics, 2015, 36(4): 752–755.
|
[3] |
GALEOTTI S, BACCI T, PICCHI A, et al. Heat transfer coefficient and adiabatic effectiveness measurements on a nozzle guide vane with a single row of cylindrical holes[J]. Journal of Turbomachinery, 2024, 146(5): 051010. doi: 10.1115/1.4064315
|
[4] |
李军, 栗智宇, 李志刚, 等. 燃烧室和涡轮相互作用下高压涡轮级气热性能研究进展[J]. 航空学报, 2021, 42(3): 136–161.
LI J, LI Z Y, LI Z G, et al. Aerothermal performance of high pressure turbine stage with combustor-turbine interactions: review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 136–161.
|
[5] |
KRUMME A, TEGELER M, GATTERMANN S. Design, integration and operation of a rotating combustor-turbine-interaction test rig within the scope of EC FP7 project FACTOR[C]//Proc of the 13th European Conference on Turboma chinery Fluid Dynamics and Thermodynamics. Lausanne: European Turbomachinery Society. 2019. doi: 10.29008/etc2019-035
|
[6] |
POVEY T, CHANA K, OLDFIELD M, et al. The design and performance of a transonic flow deswirling system – an application of current CFD design techniques tested against model and full-scale experiments[M]. Oxford: IMechE Professional Engineering Publishing, 2003.
|
[7] |
WERSCHNIK H, HERRMANN J, SCHIFFER H P, et al. The influence of combustor swirl on pressure losses and the propagation of coolant flows at the large scale turbine rig (LSTR)[J]. International Journal of Turbomachinery Propulsion and Power, 2017, 2(3): 12. doi: 10.3390/ijtpp2030012
|
[8] |
BACCI T, BECCHI R, PICCHI A, et al. Adiabatic effectiveness on high-pressure turbine nozzle guide vanes under realistic swirling conditions[J]. Journal of Turbomachinery, 2019, 141(1): 011009. doi: 10.1115/1.4041559
|
[9] |
LUQUE S, KANJIRAKKAD V, ASLANIDOU I, et al. A new experimental facility to investigate combustor–turbine interactions in gas turbines with multiple can combustors[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(5): 051503. doi: 10.1115/1.4028714
|
[10] |
叶沉然, 王高峰, 方元祺, 等. 涡轮导叶对环形燃烧室点火的影响[J]. 燃烧科学与技术, 2020, 26(1): 75–80.
YE C R, WANG G F, FANG Y Q, et al. Ignition dynamics in annular combustor with turbine guide vanes[J]. Journal of Combustion Science and Technology, 2020, 26(1): 75–80.
|
[11] |
KOUPPER C, CACIOLLI G, GICQUEL L, et al. Development of an engine representative combustor simulator dedicated to hot streak generation[J]. Journal of Turbo-machinery, 2014, 136(11): 111007. doi: 10.1115/1.4028175
|
[12] |
KOUPPER C, GICQUEL L, DUCHAINE F, et al. Experimental and numerical calculation of turbulent timescales at the exit of an engine representative combustor simulator[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(2): 021503. doi: 10.1115/1.4031262
|
[13] |
BACCI T, CACIOLLI G, FACCHINI B, et al. Flowfield and temperature profiles measurements on a combustor simulator dedicated to hot streaks generation[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. 2015. doi: 10.1115/GT2015-42217
|
[14] |
HALL B F, CHANA K S, POVEY T. Design of a nonreacting combustor simulator with swirl and temperature distortion with experimental validation[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(8): 081501. doi: 10.1115/1.4026809
|
[15] |
CHA C M, HONG S, IRELAND P T, et al. Experimental and numerical investigation of combustor-turbine interaction using an isotbermal, nonreacting tracer[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(8): 081501. doi: 10.1115/1.4005815
|
[1] | ZHU Xinxin, WANG Hui, HU Dezhou, HUANG Zhenjun, ZHAO Wenfeng. Research on stagnation point heat flux measurement methods of the sharp leading edge model in arc-heated wind tunnel test[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230051 |
[2] | CHEN Suyu, DING Tao, KONG Rongzong, TIAN Runyu, LIU Jichun, GONG Hongming. Heat flux measurement of small scale gap corner at high Mach numbers[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 89-96. DOI: 10.11729/syltlx20210063 |
[3] | ZHU Xinxin, LI Zeyu, ZHAO Wenfeng, WANG Hui, YANG Kai, YANG Qingtao. Research on fluid-thermal coupling simulation of water-cooled calorimeter and experimental analysis[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 83-88. DOI: 10.11729/syltlx20210011 |
[4] | ZHU Xinxin, WANG Hui, YANG Kai, ZHU Tao, YANG Qingtao, LIU Jinbo. Research on heat flux calculation and correction methods of the slug calorimeter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 97-102, 108. DOI: 10.11729/syltlx20190134 |
[5] | Li Yu, Zhu Guangsheng, Nie Chunsheng, Tan Meijing, Chen Weihua, Cao Zhanwei. Study on the influence of cold spot effect on the thermal measurement characteristics of circular foil heat flow sensor in hypersonic convection environment[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 39-44. DOI: 10.11729/syltlx20180110 |
[6] | Zhu Xinxin, Yang Qingtao, Wang Hui, Yang Kai, Zhu Tao. Improvement of heat insulation structure in the slug calorimeter and test analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 34-40. DOI: 10.11729/syltlx20180071 |
[7] | Gong Hongming, Chen Jingqiu, Li Li, Tian Runyu. Experimental investigationon the aerodynamic heating to tile-to-tile gaps in tubulent bouandry layer[J]. Journal of Experiments in Fluid Mechanics, 2015, (2): 13-18,25. DOI: 10.11729/syltlx20140093 |
[8] | Yang Qingtao, Bai Hanchen, Zhang Tao, Wang Hui. Effects of adiabatic structure on heat flux measurement using a slug calorimeter[J]. Journal of Experiments in Fluid Mechanics, 2014, (5): 92-98. DOI: 10.11729/syltlx20130085 |
[9] | HUANG Zong-bo, WANG Xun-nian, ZHANG Rong-ping. Investigation of gap effect on the rudder hinge moment characteristics[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(4): 1-6. DOI: 10.3969/j.issn.1672-9897.2007.04.001 |
[10] | TANG Gui-ming. AExperimental investigation of heat transfer distributions in a deep gap[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(4): 1-6. DOI: 10.3969/j.issn.1672-9897.2000.04.001 |
1. |
刘晓宏,温治,杜宇航,苏福永,张四宗,楼国锋. 基于Fluent的气液双流体喷嘴雾化特性研究. 机电工程技术. 2024(03): 26-29+91 .
![]() | |
2. |
彭燕祥,张华,何贵成. 基于最大熵原理的喷雾液滴粒径分布预测研究. 农业机械学报. 2023(09): 217-226 .
![]() |