LYU J C, ZHU Z X, Zhao L F, et al. Investigation of hot streak simulation of a triple model combustor coupled with turbine guide vanes[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 21-29. DOI: 10.11729/syltlx20230130
Citation: LYU J C, ZHU Z X, Zhao L F, et al. Investigation of hot streak simulation of a triple model combustor coupled with turbine guide vanes[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 21-29. DOI: 10.11729/syltlx20230130

Investigation of hot streak simulation of a triple model combustor coupled with turbine guide vanes

More Information
  • Received Date: October 09, 2023
  • Revised Date: July 29, 2024
  • Accepted Date: September 05, 2024
  • Available Online: November 26, 2024
  • In order to investigate the migration laws of hot streak in the coupled system of combustor and turbine, and establish a simulation method for electrically heated swirling hot streak, this research presents construction of a triple model combustor with turbine guide vanes. Besides, a high–temperature dual–axis displacement mechanism–based temperature contact test technology is developed to obtain the temperature distribution at the combustor outlet in the coupled system under three different simulator structures. The experimental results are validated by the numerical method, and the flow field characteristics and the generation law of hot streak in the coupled system under various simulator structures are compared and analyzed. The research findings demonstrate that: 1) The swirl–maintaining extension enhances the mixing effect between the mixed jets and the swirl interference mechanism in the combustor. This effectively reduces swirl dissipation and facilitates the simulation of combustion hot streak. 2) As the length of the extension increases, the swirl intensity at the combustor outlet also increases, leading to changes in the distribution shape of the hot streak at the outlet. These changes influence the migration process of hot streak in the turbine guide vanes.

  • [1]
    尹洪. 先进燃气轮机燃烧室与透平交互作用的流动传热机理研究[D]. 北京: 清华大学, 2014.

    YIN H. Research on the flow and heat transfer of combustor-turbine interactionin advanced gas turbine[D]. Beijing: Tsinghua University, 2014.
    [2]
    李雪英, 任静, 蒋洪德. 燃烧室温度剖面对静叶端壁冷却的影响[J]. 工程热物理学报, 2015, 36(4): 752–755.

    LI X Y, REN J, JIANG H D. The influence of combustor outlet temperature profile on a vane endwall[J]. Journal of Engineering Thermophysics, 2015, 36(4): 752–755.
    [3]
    GALEOTTI S, BACCI T, PICCHI A, et al. Heat transfer coefficient and adiabatic effectiveness measurements on a nozzle guide vane with a single row of cylindrical holes[J]. Journal of Turbomachinery, 2024, 146(5): 051010. doi: 10.1115/1.4064315
    [4]
    李军, 栗智宇, 李志刚, 等. 燃烧室和涡轮相互作用下高压涡轮级气热性能研究进展[J]. 航空学报, 2021, 42(3): 136–161.

    LI J, LI Z Y, LI Z G, et al. Aerothermal performance of high pressure turbine stage with combustor-turbine interactions: review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 136–161.
    [5]
    KRUMME A, TEGELER M, GATTERMANN S. Design, integration and operation of a rotating combustor-turbine-interaction test rig within the scope of EC FP7 project FACTOR[C]//Proc of the 13th European Conference on Turboma chinery Fluid Dynamics and Thermodynamics. Lausanne: European Turbomachinery Society. 2019. doi: 10.29008/etc2019-035
    [6]
    POVEY T, CHANA K, OLDFIELD M, et al. The design and performance of a transonic flow deswirling system – an application of current CFD design techniques tested against model and full-scale experiments[M]. Oxford: IMechE Professional Engineering Publishing, 2003.
    [7]
    WERSCHNIK H, HERRMANN J, SCHIFFER H P, et al. The influence of combustor swirl on pressure losses and the propagation of coolant flows at the large scale turbine rig (LSTR)[J]. International Journal of Turbomachinery Propulsion and Power, 2017, 2(3): 12. doi: 10.3390/ijtpp2030012
    [8]
    BACCI T, BECCHI R, PICCHI A, et al. Adiabatic effectiveness on high-pressure turbine nozzle guide vanes under realistic swirling conditions[J]. Journal of Turbomachinery, 2019, 141(1): 011009. doi: 10.1115/1.4041559
    [9]
    LUQUE S, KANJIRAKKAD V, ASLANIDOU I, et al. A new experimental facility to investigate combustor–turbine interactions in gas turbines with multiple can combustors[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(5): 051503. doi: 10.1115/1.4028714
    [10]
    叶沉然, 王高峰, 方元祺, 等. 涡轮导叶对环形燃烧室点火的影响[J]. 燃烧科学与技术, 2020, 26(1): 75–80.

    YE C R, WANG G F, FANG Y Q, et al. Ignition dynamics in annular combustor with turbine guide vanes[J]. Journal of Combustion Science and Technology, 2020, 26(1): 75–80.
    [11]
    KOUPPER C, CACIOLLI G, GICQUEL L, et al. Development of an engine representative combustor simulator dedicated to hot streak generation[J]. Journal of Turbo-machinery, 2014, 136(11): 111007. doi: 10.1115/1.4028175
    [12]
    KOUPPER C, GICQUEL L, DUCHAINE F, et al. Experimental and numerical calculation of turbulent timescales at the exit of an engine representative combustor simulator[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(2): 021503. doi: 10.1115/1.4031262
    [13]
    BACCI T, CACIOLLI G, FACCHINI B, et al. Flowfield and temperature profiles measurements on a combustor simulator dedicated to hot streaks generation[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. 2015. doi: 10.1115/GT2015-42217
    [14]
    HALL B F, CHANA K S, POVEY T. Design of a nonreacting combustor simulator with swirl and temperature distortion with experimental validation[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(8): 081501. doi: 10.1115/1.4026809
    [15]
    CHA C M, HONG S, IRELAND P T, et al. Experimental and numerical investigation of combustor-turbine interaction using an isotbermal, nonreacting tracer[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(8): 081501. doi: 10.1115/1.4005815
  • Related Articles

    [1]YANG Kai, LIU Jichun, CHEN Suyu, ZHU Xinxin, WANG Hui. Calibration results and analysis of thin-film gauges calibrated with the transfer method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 106-111. DOI: 10.11729/syltlx20210129
    [2]OU Dongbin, YANG Guoming, ZHU Xingying, WEN Peng, ZHANG Zhi, ZENG Hui. Study on electric and thermal characteristics of CO2 arc heater[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220065
    [3]YANG Hong, YAO Feng, ZHU Chao, ZHU Tao, CHEN Dejiang. A preliminary study of segmented arc heater used for high pressure operation[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 74-82. DOI: 10.11729/syltlx20220060
    [4]Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088
    [5]Lin Xin, Chen Lianzhong, Dong Yonghui, Ou Dongbin, Li Fei, Yu Xilong. Experimental study on leak detection of cooling water in arc heater based on emission spectroscopy[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 14-19. DOI: 10.11729/syltlx20150155
    [6]Xu Tao, Yang Dayong. Experimental research of electroosmotic flow in rough microchannels based on current-monitoring method[J]. Journal of Experiments in Fluid Mechanics, 2015, (4): 41-46. DOI: 10.11729/syltlx20140112
    [7]Wu Jinhua, Sun Haisheng, Shen Zhihong, Jiang Yubiao. 旋转流场下的振荡动导数试验技术研究[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 54-58. DOI: 10.11729/syltlx20130057
    [8]ZENG Lei, SHI You-an, KONG Rong-zong, HE Li-xin, GUI Ye-wei. Study on principle error analysis and data processing method of thin film resistance thermometer[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(1): 79-83. DOI: 10.3969/j.issn.1672-9897.2011.01.016
    [9]ZHAO Yu-xin, TIAN Li-feng, YI Shi-he, HE Lin, CHENG Zhong-yu. Experimental study of flow structure in pressure unmatched mixing layer[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 14-17. DOI: 10.3969/j.issn.1672-9897.2007.03.003
    [10]SU Yong, CHEN De-jiang, YOU Min, WANG Mao-gang, YANG Qing-tao, WU Dong, ZHANG Wei. Research on transient ablation technique in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 29-33. DOI: 10.3969/j.issn.1672-9897.2005.03.007

Catalog

    Article Metrics

    Article views (53) PDF downloads (22) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close