Citation: | YANG Y, QIAN F X, ZHANG C F, et al. Research on wind tunnel test technology of sonic boom measurement based on probe[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 92-100. DOI: 10.11729/syltlx20210193 |
[1] |
CANDEL S. Concorde and the future of supersonic transport[J]. Journal of Propulsion and Power, 2004, 20(1): 59–68. doi: 10.2514/1.9180
|
[2] |
LEATHERWOOD J D, SULLIVAN B M, SHEPHERD K P, et al. Summary of recent NASA studies of human response to sonic booms[J]. The Journal of the Acoustical Society of America, 2002, 111: 586–598. doi: 10.1121/1.1371767
|
[3] |
朱自强, 吴宗成, 陈迎春. 民机空气动力设计先进技术[M]. 上海: 上海交通大学出版社, 2013.
ZHU Z Q, WU Z C, CHEN Y C. Advanced technology of aerodynamic design for commercial aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2013.
|
[4] |
朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507–2528.
ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2507–2528.
|
[5] |
CARLSON H W. Correlation of sonic-Boom theory with wind-tunnel and flight measurements[R]. NASA TRR–213, 1964.
|
[6] |
MENDOZA J P, HICKS R M. Further studies of the extrapolation of near-field overpressure data[R]. NASA TM X–2219, 1971.
|
[7] |
HUNTON L W, HICKS, R M, MENDOZA J P. Some effects of wing planform on sonic boom[R]. NASA TND–7160, 1 973.
|
[8] |
CARLSON H, MORRIS O. Wind-tunnel sonic-boom testing techniques[C]//Proc of the 2nd Aerodynamic Testing Conference. 1966.
|
[9] |
CARLSON H W, MACK R J, MORRIS O A. A wind-tunnel investigation of the effect of body shape on sonic-boom pressure distributions[R]. NASA TND−3106, 1965.
|
[10] |
CARLSON H W, MACK R J. A study of the sonic-boom characteristics of a blunt body at a Mach number of 4.14[R]. NASA TP−1015, 1977.
|
[11] |
MACK R J, KUHN N. Determination of extrapolation distance with measured pressure signatures from two low-boom models[R]. NASA TM-2004-213264, 2004.
|
[12] |
WILCOX F J, ELMILIGUI A, WAYMAN T R, et al. Experimental sonic boom measurements on a Mach 1.6 cruise low-boom configuration[R]. NASA TM-2012-217598, 2012.
|
[13] |
MAKINO Y, SUZUKI K, NOGUCHI M, et al. Non-axisymmetrical fuselage shape modification for drag reduction of a low sonic-boom Airplane[R]. AIAA−2003−557, 2003.
|
[14] |
FURUKAWA T, MAKINO Y, NOGUCHI M, et al. Supporting system study of wind-tunnel models for validation of aft-sonic-boom shaping design[R]. AIAA−2008−6596, 2008.
|
[15] |
DURSTON D A, CLIFF S E, WAYMAN T R, et al. Near field sonic boom test on two low-boom configurations using multiple measurement techniques at NASA Ames[R]. AIAA-2011–3333, 2011.
|
[16] |
CLIFF S, ELMILIGUI A, AFTOSMIS M, et al. Design and evaluation of a pressure rail for sonic boom measurements in wind tunnels[C]// Proc of Seventh International Conference on Computational Fluid Dynamics(ICCFD7). 2012.
|
[17] |
MORGENSTERN J M. How to accurately measure low sonic boom or model surface pressure in supersonic wind tunnel[R]. AIAA-2012-3215, 2012.
|
[18] |
刘中臣, 钱战森, 冷岩, 等. 声爆近场空间压力风洞测量技术[J]. 航空学报, 2020, 41(4): 109–121.
LIU Z C, QIAN Z S, LENG Y, et al. Wind tunnel measurement techniques for sonic boom near-field pressure[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 109–121.
|