Citation: | WU Taofeng, LUAN Yinsen, SHI Shengxian. Simulation and analysis of simultaneous 3D velocity and temperature measurement technique based on light field imaging technology[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 75-82. DOI: 10.11729/syltlx20200092 |
[1] |
OMRANE A, PETERSSON P, ALDÉN M, et al. Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors[J]. Applied Physics B, 2008, 92(1): 99-102. doi: 10.1007/s00340-008-3051-1
|
[2] |
FOND B, ABRAM C, HEYES A L, et al. Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles[J]. Optics Express, 2012, 20(20): 22118-22133. doi: 10.1364/OE.20.022118
|
[3] |
GEYER D, KEMPF A, DREIZLER A, et al. Turbulent opposed-jet flames: a critical benchmark experiment for combustion LES[J]. Combustion and Flame, 2005, 143(4): 524-548. doi: 10.1016/j.combustflame.2005.08.032
|
[4] |
ADRIAN R J. Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetryvs particle image velocimetry[J]. Applied Optics, 1984, 23(11): 1690-1691. doi: 10.1364/AO.23.001690
|
[5] |
ELSINGA G E, SCARANO F, WIENEKE B, et al. Tomographic particle image velocimetry[J]. Experiments in Fluids, 2006, 41(6): 933-947. doi: 10.1007/s00348-006-0212-z
|
[6] |
丁俊飞, 许晟明, 施圣贤. 光场单相机三维流场测试技术[J]. 实验流体力学, 2016, 30(6): 50-58. DOI: 10.11729/syltlx20160141
DING J F, XU S M, SHI S X. Light field volumetric particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 50-58. doi: 10.11729/syltlx20160141
|
[7] |
SHI S X, WANG J H, DING J F, et al. Parametric study on light field volumetric particle image velocimetry[J]. Flow Measurement and Instrumentation, 2016, 49: 70-88. doi: 10.1016/j.flowmeasinst.2016.05.006
|
[8] |
SHI S X, DING J F, NEW T H, et al. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique[J]. Experiments in Fluids, 2017, 58(7): 1-16. doi: 10.1007/s00348-017-2365-3
|
[9] |
FAHRINGER T W, LYNCH K P, THUROW B S. Volumetric particle image velocimetry with a singleplenoptic camera[J]. Measurement Science and Technology, 2015, 26(11): 115201. doi: 10.1088/0957-0233/26/11/115201
|
[10] |
ABOU NADA F, RICHTER M, KNAPPE C, et al. On the automation of thermographic phosphor calibration[C]//Proceedings of the 60th International Instrumentation Symposium. 2014. doi: 10.1049/cp.2014.0548
|
[11] |
NEUBERT P. Device for indicating the temperature distribution of hot bodies: USA, 2071471[P]. 1937-02-23.
|
[12] |
YI S J, KIM K C. Phosphorescence-basedmultiphysics visuali-zation: a review[J]. Journal of Visualization, 2014, 17(4): 253-273. doi: 10.1007/s12650-014-0215-4
|
[13] |
OMRANE A, OSSLER F, ALDÉN M. Temperature measurements of combustible and non-combustible surfaces using laser induced phosphorescence[J]. Experimental Thermal and Fluid Science, 2004, 28(7): 669-676. doi: 10.1016/j.expthermflusci.2003.12.003
|
[14] |
FUHRMANN N, BRVBACH J, DREIZLER A. Phosphor thermometry: a comparison of the luminescence lifetime and the intensity ratio approach[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3611-3618. doi: 10.1016/j.proci.2012.06.084
|
[15] |
YI S J, KIM H D, KIM K C. Decay-slope method for 2-dimensional temperature field measurement usingthermographic phosphors[J]. Experimental Thermal and Fluid Science, 2014, 59: 1-8. doi: 10.1016/j.expthermflusci.2014.07.007
|
[16] |
ZHOU Q, ERKAN N, OKAMOTO K. Simultaneous measurement of temperature and flow distributions inside pendant water droplets evaporating in an upward air stream using temperature-sensitive particles[J]. Nuclear Engineering and Design, 2019, 345: 157-165. doi: 10.1016/j.nucengdes.2019.02.019
|
[17] |
SCHIEPEL D, SCHMELING D, WAGNER C. Simultaneous velocity and temperature measurements in turbulent Rayleigh-Bénard convection based on combined Tomo-PIV and PIT[C]//Proc of the 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics. 2016.
|
[18] |
梅迪, 丁俊飞, 施圣贤. 基于双光场相机的高分辨率光场三维PIV技术[J]. 实验流体力学, 2019, 33(2): 57-65. DOI: 10.11729/syltlx20180165
MEI D, DING J F, SHI S X. High resolution volumetric light field particle image velocimetry with dualplenoptic cameras[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 57-65. doi: 10.11729/syltlx20180165
|
[19] |
RAFFEL M, WILLERT C E, SCARANO F, et al. Particle image velocimetry-A practical guide[M]. 2nd ed. New York: Springer, 2007.
|
[20] |
王晟, 胡志云, 邵珺, 等. 双色热敏磷光涂层测温技术[J]. 红外与激光工程, 2014, 43(5): 1406-1410. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201405010.htm
WANG S, HU Z Y, SHAO J, et al. Two-color thermally sensitive phosphor coatings for temperature measurement[J]. Infrared and Laser Engineering, 2014, 43(5): 1406-1410. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201405010.htm
|
[21] |
KHALID A H, KONTIS K. Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications[J]. Sensors (Basel, Switzerland), 2008, 8(9): 5673-5744. doi: 10.3390/s8095673
|
[22] |
SOMEYA S, YOSHIDA S, LI Y R, et al. Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles[J]. Measurement Science and Technology, 2009, 20(2): 025403. doi: 10.1088/0957-0233/20/2/025403
|
[23] |
ABOU NADA F, KNAPPE C, XU X, et al. Development of an automatic routine for calibration ofthermographic phosphors[J]. Measurement Science and Technology, 2014, 25(2): 025201. doi: 10.1088/0957-0233/25/2/025201
|
[24] |
ELSINGA G E, SCARANO F, WIENEKE B, et al. Tomographic particle image velocimetry[J]. Experiments in Fluids, 2006, 41(6): 933-947. doi: 10.1007/s00348-006-0212-z
|
[25] |
FAHRINGER T W, LYNCH K P, THUROW B S. Volumetric particle image velocimetry with single plenoptic camera[J]. Measurement Science and Technology, 2015, 26(11): 115201. doi: 10.1088/0957-0233/26/11/115201
|
[1] | LIU Qiang, LI Qiang, WEI Chunhua, YIN Xiwei, JIANG Hailin, LIANG Lei. The dynamic calibration method of PSP and its characteristics research considering the influence of temperature[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230161 |
[2] | CAI Yanqing, YANG Xiaoli, WANG Kaixing, LIU Fuqiang, LENG Xianyin, WANG Shaolin, LIU Cunxi, MU Yong, XU Gang. Experimental study on the effect of two-stage radial spacing on flow field and atomization in LDI staged combustor[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 15-24. DOI: 10.11729/syltlx20220082 |
[3] | WANG Lei, LI Zhe, FENG Lihao. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 87-95. DOI: 10.11729/syltlx20230039 |
[4] | ZHAO Rongjuan, LIU Shiran, ZHOU Zheng, WU Liyin, LYU Zhiguo. Research of scramjet thrust test in shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 103-108. DOI: 10.11729/syltlx20210025 |
[5] | CHEN Lin, FENG Jing. Thermophysical properties research progress of ferroelastic RETaO4 ceramics[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 56-76. DOI: 10.11729/syltlx20220020 |
[6] | LIU Yu, XIAO Baoguo, WANG Lan, CHEN Weiqiang. Standing stability enhancement method of oblique detonation waves in a confined space and its experimental validation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 109-116. DOI: 10.11729/syltlx20200084 |
[7] | ZHAO Rongjuan, HUANG Jun, LIU Shiran, LYU Zhiguo, LI Guozhi. Application of ANSYS in piezoelectric balance design[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 96-102. DOI: 10.11729/syltlx20190005 |
[8] | Zhang Shiyu, Fu Zengliang, Zhao Junbo, Gao Qing, Qian Er. Development of near-space-vehicle anemometer and calibration tests in low-temperature-low-static-pressure wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 81-85, 103. DOI: 10.11729/syltlx20160137 |
[9] | Miao Bo, Zhu Chunling, Zhu Chengxiang, Zhang Huijun, Fu Bin. Vibration de-icing method with piezoelectric actuators on airfoil surface[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 46-53. DOI: 10.11729/syltlx20160010 |
[10] | LIU Chu-ping, MENG Song-he, DU Bai-he, WANG Guo-lin. Preliminary tests of non-ablative thermal protection materials[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3): 50-53,69. DOI: 10.3969/j.issn.1672-9897.2009.03.011 |
1. |
苏鑫,管润程,王桥,苑伟政,吕湘连,何洋. 基于深度学习的结冰区域和厚度检测方法. 航空学报. 2023(S2): 205-213 .
![]() | |
2. |
郝云权,赵大志,李伟斌,赵炜,陈江涛. 飞机结冰的不确定性量化研究进展. 航空动力学报. 2022(09): 1855-1871 .
![]() | |
3. |
王良禹,徐浩军,张喆,裴彬彬,薛源. 结冰对飞机横航向飞行品质的影响. 飞行力学. 2018(01): 16-19 .
![]() | |
4. |
易贤,李维浩,王应宇,马洪林. 飞机结冰传感器安装位置确定方法. 实验流体力学. 2018(02): 48-54 .
![]() |