YUE Maoxiong, ZHANG Wanzhou, WU Yungang, YUAN Qiang, DENG Weixin. Research on large field visualizaiton based on divergent light reflective layout[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 77-82. DOI: 10.11729/syltlx20200081
Citation: YUE Maoxiong, ZHANG Wanzhou, WU Yungang, YUAN Qiang, DENG Weixin. Research on large field visualizaiton based on divergent light reflective layout[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 77-82. DOI: 10.11729/syltlx20200081

Research on large field visualizaiton based on divergent light reflective layout

More Information
  • Received Date: July 07, 2020
  • Revised Date: December 15, 2020
  • Larger scale of flow-field visualization is required for larger wind tunnel, larger test model and longer jet flow. Two methods of the large field visualization were proposed which are based on divergent light reflective layout and are named as the reflective focusing schlieren method and the reflective shadow method, respectively. A reflective focusing schlieren device was built in laboratory which improves the source grid and light source. A visualization field with a diameter of about 1.5 m was obtained. The field uniformity and the minimum exposure time under test condition indicate that the reflective focusing schlieren method could be utilized for the large scale wind tunnel and other situations. Also, to realize the large field visualization for the situation with strong vibration, a diffuse reflective shadow visualization device was set up, and a visualization field with a length of about 2.5 m was obtained for a combustion jet flow. Finally, according to the characteristics of the reflective method, the applicability of the method in larger tunnel layout was evaluated, and the results show that the method is completely suitable for the large-scale wind tunnel visualization.
  • [1]
    SETTLES G S. Schlieren and shadowgraph techniques: visualizing phenomena in transparent media[M]. Berlin: Springer Press, 2001.
    [2]
    范洁川. 近代流动显示技术[M]. 北京: 国防工业出版社, 2002.
    [3]
    孙威, 李泽仁, 汪伟, 等. 大口径纹影系统主反射镜装调结构分析与设计[J]. 深圳大学学报(理工版), 2010, 27(2): 162-166. DOI: 10.3969/j.issn.1000-2618.2010.02.008

    SUN W, LI Z R, WANG W, et al. Structural analysis and design for the supporting and adjusting of the primary mirror inschlieren system with large aperture[J]. Journal of Shenzhen University Science and Engineering, 2010, 27(2): 162-166. DOI: 10.3969/j.issn.1000-2618.2010.02.008
    [4]
    杨晓飞, 韩昌元. 利用计算机辅助装调检测矩形大口径离轴非球面的方法研究[J]. 光学技术, 2004, 30(5): 532-534. DOI: 10.3321/j.issn:1002-1582.2004.05.004

    YANG X F, HAN C Y. Study on testing methods of large-aperture rectangle off-axis aspherical surface with computer aided alignment[J]. Optical Technique, 2004, 30(5): 532-534. doi: 10.3321/j.issn:1002-1582.2004.05.004
    [5]
    MIZUKAKI T, BATHEL B F, BORG S E, et al. Background-orientedschlieren for large-scale and high-speed aerodynamic phenomena (invited)[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015. doi: 10.2514/6.2015-1692
    [6]
    SMITH N T, HEINECK J T, SCHAIRER E T. Optical flow for flight and wind tunnel background orientedschlieren imaging[C]//Proc of the 55th AIAA Aerospace Sciences Meeting. 2017. doi: 10.2514/6.2017-0472
    [7]
    WEISS J, CHOKANI N. Integration properties of focusing schlieren deflectometer[R]. AIAA-2006-2810, 2006. doi: 10.2514/6.2006-2810.
    [8]
    STEVENS C A, HOKE J, SCHAUER F. Optical measurement of detonation with a focusingschlieren technique[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015. doi: 10.2514/6.2015-1350
    [9]
    KOUCHI T, GOYNE C P, ROCKWELL R D, et al. Focusing-schlieren visualization in direct-connect dual-mode scramjet[R]. AIAA-2012-5834, 2012.
    [10]
    FAGAN A F, L'ESPERANCE D, ZAMAN K Q. Application of a novel projection focusingschlieren system in NASA test facilities[C]//Proc of the 30th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2014. doi: 10.2514/6.2014-2522
    [11]
    ZHOU H, WANG G, YUAN X, et al. CCD camera shadowgraph system with laser light source[C]//Proc of the 18th International Symposium on Ballistics. 1999.
    [12]
    罗红娥, 顾金良, 陈平, 等. 三次序列闪光阴影照相系统研究[J]. 半导体光电, 2011, 32(2): 265-267. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201102030.htm

    LUO H E, GU J L, CHEN P, et al. Research on shadow photograph system with three-sequence laser sparking[J]. Semiconductor Optoelectronics, 2011, 32(2): 265-267. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201102030.htm
    [13]
    岳茂雄, 王如琴, 姚向红, 等. 高速聚焦纹影改进及应用[J]. 实验流体力学, 2013, 27(5): 88-93. http://www.syltlx.com/CN/abstract/abstract10399.shtml

    YUE M X, WANG R Q, YAO X H, et al. Improved high-speed focusingschlieren system and its application[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(5): 88-93. http://www.syltlx.com/CN/abstract/abstract10399.shtml
    [14]
    徐翔, 谢爱民, 吕治国, 等. 聚焦纹影显示技术在激波风洞的初步应用[J]. 实验流体力学, 2009, 23(3): 75-79. http://www.syltlx.com/CN/abstract/abstract9749.shtml

    XU X, XIE A M, LV Z G, et al. Application of focusingschlieren visualization system in shock tunnel experiment[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3): 75-79. http://www.syltlx.com/CN/abstract/abstract9749.shtml
    [15]
    谢爱民, 部绍清, 罗锦阳. 基于光源拼接的大视场聚焦纹影技术初步研究[J]. 实验流体力学, 2018, 32(6): 68-73. DOI: 10.11729/syltlx20180012

    XIE A M, BU S Q, LUO J Y. Primary study of large-field focusingschlieren technique based on tiled light sources[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 68-73. doi: 10.11729/syltlx20180012
    [16]
    岳茂雄, 吴运刚, 张龙, 等. 反射式聚焦纹影显示大视场[C]//中国空气动力学会测控专业委员会第六届五次全国学术交流会论文集. 2014.

    YUE M X, WU Y G, ZHANG L, et al. Flow visualization of the large field of view using reflection focusedschlieren[C]//Proc of the 5th session of the 6 national academic exchange of measurement and control committee of China Aerodynamics Society. 2014.
  • Related Articles

    [1]WANG Yifan, QIN Qihao, GUAN Ruiqing, XU Jinglei. Experimental study and statistical analysis of flow field pulsation of spiked cylinder[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 30-37. DOI: 10.11729/syltlx20220078
    [2]Liu Richao, Le Jialing, Chen Liujun, Yang Shunhua, Song Wenyan. Experimental and numerical study on spray atomization in a double-swirler combustor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 24-31, 45. DOI: 10.11729/syltlx20170093
    [3]Kong Shangfeng, Feng Feng, Deng Hanyu. Breakup of a kerosene droplet at high Weber numbers[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 20-25. DOI: 10.11729/syltlx20160106
    [4]Liao Bin, Zhang Guifu, Wang Luhai, Zhu Yujian, Yang Jiming. Deformation and breakup behaviors of a drop in ambient liquid under impact[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 9-16. DOI: 10.11729/syltlx20160029
    [5]LIU Zhi-rong, ZHU Rui. Dual wingtips vortexes Rayleigh-Ludwieg instability experimental research[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 24-30. DOI: 10.3969/j.issn.1672-9897.2013.02.005
    [6]HUANG Wen-bin, ZOU Li-yong, LIU Jin-hong, TAN Duo-wang, ZHANG Guang-sheng. Effects of initial perturbations on Rayleigh-Taylor instability growth at gas-liquid interface[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 39-41,66. DOI: 10.3969/j.issn.1672-9897.2010.03.008
    [7]YANG Lei, HAN Zhao-yuan, HUANG Zhong-wei. Experimental study on breakup and atomization of axisymmetrical dissemination of liquid[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(2): 50-55. DOI: 10.3969/j.issn.1672-9897.2007.02.011
    [8]ZHUO Qi-wei, SHI Hong-hui. Experimental study of Richtmyer-Meshkov instability at a gas/liquid interface in a shock tube[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 25-30. DOI: 10.3969/j.issn.1672-9897.2007.01.005
    [9]CAI Qing-jun, HAN Zhao-yuan, WAN Qun, ZHANG Shou-qi. An investigation of later period of primary breakup in axisymmetric dissemination of liquid ring[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(1): 57-62. DOI: 10.3969/j.issn.1672-9897.2000.01.007
    [10]Cai Qingjun, Han Zhaoyuan, Wan Qun, Zhang Shouqi. An Investigation of Basic Behaviour of Atomization[1〗Region Formed by Secondary Breakup of Liquid Ring[J]. Journal of Experiments in Fluid Mechanics, 1999, 13(2): 22-29. DOI: 10.3969/j.issn.1672-9897.1999.02.004

Catalog

    Article Metrics

    Article views (361) PDF downloads (32) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close