Citation: | Liao Bin, Zhang Guifu, Wang Luhai, Zhu Yujian, Yang Jiming. Deformation and breakup behaviors of a drop in ambient liquid under impact[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 9-16. DOI: 10.11729/syltlx20160029 |
[1] |
Lane W R. Shatter of drops in streams of air[J]. Ind Eng Chem, 1951, 43(6):1312-1317. DOI: 10.1021/ie50498a022
|
[2] |
Hinze J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes[J]. AIChE Journal, 1955, 1(3):289-295. DOI: 10.1002/(ISSN)1547-5905
|
[3] |
Hanson A R, Domich E G, Adams H S. Shock tube investigation of the breakup of drops by air blasts[J]. Phys Fluids, 1963, 6(8):1070-1080. DOI: 10.1063/1.1706864
|
[4] |
Simpkins P G, Bales E L.Water-drop response to sudden acce-lerations[J]. J Fluid Mech, 1972, 55(4):629-639. DOI: 10.1017/S0022112072002058
|
[5] |
Krzeczkowski S A. Measurement of liquid droplet disintegration mechanisms[J]. Int J Multiphase Flow, 1980, 6(3):227-239. DOI: 10.1016/0301-9322(80)90013-0
|
[6] |
Wierzba A, Takayama K. Experimental investigation of the aerodynamic breakup of liquid drops[J]. AIAA Journal, 1988, 26(11):1329-1335. DOI: 10.2514/3.10044
|
[7] |
Yoshida T, Takayama K. Interaction of liquid droplets with planar shock waves[J]. Trans ASME J Fluids Engng, 1990, 112(4):481-486. DOI: 10.1115/1.2909431
|
[8] |
Wierzba A. Deformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers[J]. Experiments in Fluids, 1990, 9(1):59-64. DOI: 10.1007%2FBF00575336
|
[9] |
Hsiang L P, Faeth G M. Near-limit drop deformation and secondary breakup[J]. Int J Multiphase Flow, 1992, 18(5):635-652. DOI: 10.1016/0301-9322(92)90036-G
|
[10] |
Hsiang L P, Faeth G M. Drop properties after secondary breakup[J]. Int J Multiphase Flow, 1993, 19(5):721-735. DOI: 10.1016/0301-9322(93)90039-W
|
[11] |
Liu Z, Reitz R D. An analysis of the distorsion and breakup mechanisms of high speed liquid drops[J]. Int J Multiphase Flow, 1997, 23(4):631-650. DOI: 10.1016/S0301-9322(96)00086-9
|
[12] |
Joseph D D, Belanger J, Beavers G S. Breakup of a liquid drop suddenly exposed to a high-speed airstream[J]. Int J Multiphase Flow, 1999, 25(6):1263-1303. https://www.researchgate.net/publication/222457588_Breakup_of_a_liquid_drop_suddenly_exposed_to_a_high-speed_airstream
|
[13] |
Lee C H, Reitz R D. An experomental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream[J]. Int J Multiphase Flow, 2000, 26(2):229-244. DOI: 10.1016/S0301-9322(99)00020-8
|
[14] |
Joseph D D, Beavers G S, Funada T. Rayleigh-Taylor instability of viscoelastic drops at high Weber numbers[J]. J Fluid Mech, 2002, 453:109-132. https://www.researchgate.net/publication/231787206_Rayleigh-Taylor_instability_of_viscoelastic_drops_at_high_Weber_numbers
|
[15] |
Theofanous T G, Li G J, Dinh T N. Aerobreakup in rarefied supersonic gas flows[J]. Trans ASME J Fluids Engng, 2004, 126(4):516-527. DOI: 10.1115/1.1777234
|
[16] |
Theofanous T G, Li G J, Dinh T N, et al. Aerobreakup in disturbed subsonic and supersonic flow fields[J]. J Fluid Mech, 2007, 593:131-170. https://www.researchgate.net/profile/Guangjun_Li2/publication/232005867_Aerobreakup_in_disturbed_subsonic_and_supersonic_flow_fields/links/564216c908aebaaea1f8b869.pdf?origin=publication_detail
|
[17] |
Theofanous T G, Li G. On the physics of aerobreakup[J]. Phys Fluids, 2008, 20(5):052103. DOI: 10.1063/1.2907989
|
[18] |
Pilch M, Erdman C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop[J]. Int J Multiphase Flow, 1987, 13(6):741-757. DOI: 10.1016/0301-9322(87)90063-2
|
[19] |
Gelfand B E. Droplet breakup phenomena in flows with velocity lag[J]. Progress in Energy and Combustion Science, 1996, 22(3):201-265. DOI: 10.1016/S0360-1285(96)00005-6
|
[20] |
Guildenbecher D R, Lopez-Rivera C, Sojka P E. Secondary ato-mization[J]. Experiments in Fluids, 2009, 46(3):371-402. DOI: 10.1007/s00348-008-0593-2
|
[21] |
Majithia A K, Hall S, Harper L, et al. Droplet breakup quantification and processes in constant and pulsed air flows[C]//Proceedings of the 22nd Conference on Liquid Atomization and Spray Systems (ILASS-Europe), Como Lake, Italy, 2008.
|
[22] |
Kulkarni V, Sojka P E. Bag breakup of low viscosity drops in the presence of a continuous air jet[J]. Phys Fluids, 2014, 26(7):072103. DOI: 10.1063/1.4887817
|
[23] |
Mohit J, Surya P R, Gaurav T, et al. Secondary breakup of a drop at moderate Weber numbers[J]. Proceedings of the Royal Society A, 2015, 147:20140930. https://www.researchgate.net/publication/276177709_Secondary_breakup_of_a_drop_at_moderate_Weber_numbers
|
[24] |
Patel P D, Theofanous T G. Hydrodynamic fragmentation of drops[J]. J Fluid Mech, 1981, 103:307-323. http://www.osti.gov/scitech/biblio/5273464
|
[25] |
Hsiang L P, Faeth G M. Drop deformation and breakup due to shock wave and steady disturbances[J]. Int J Multiphase Flow, 1995, 21(4):545-560. DOI: 10.1016/0301-9322(94)00095-2
|
[26] |
Landeau M, Deguen R, Olson P. Experiments on the fragmentation of a buoyant liquid volume in another liquid[J]. J Fluid Mech, 2014, 749:478-518. DOI: 10.1017/jfm.2014.202
|
[27] |
熊燃华, 许明, 李耀发, 等.液-液两相介质中液滴在冲击作用下的演变过程[J].中国科学:物理学力学天文学, 2010, 40(6):773-780. http://phys.scichina.com:8083/sciG/EN/Y2010/V40/I6/773
Xiong R H, Xu M, Li Y F, et al. The deformation and breakup of a drop-in-liquid under an impact loading[J]. Science China Phys, Mech and Astron, 2010, 40(6):773-780. http://phys.scichina.com:8083/sciG/EN/Y2010/V40/I6/773
|
[28] |
Andreas J M, Hauser E A, Tucker W B. Boundary tension by pendant drops[J]. J Phys Chem, 1938, 42(8):1001-1019. http://www.researchgate.net/publication/231423689_Boundary_Tension_by_Pendant_Drops
|
[1] | XIA Huihui, ZHANG Shunping, YANG Shunhua, KAN Ruifeng, XU Zhenyu, RUAN Jun, YAO Lu, HUANG An. Two-dimensional distribution measurement of direct-connect scramjet combustion flow field based on TDLAS multi-absorption lines[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 80-86. DOI: 10.11729/syltlx20220103 |
[2] | LIANG Xiaoyi, DING Junfei, ZHANG Yong, LIU Yiqun, TIAN Haiping. Three-dimensional particle reconstruction method for trichromatic mask PIV based on convolutional neural networks[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20240045 |
[3] | YUAN Xun, YU Xin, PENG Jiangbo, QIN Fei, LIU Bing, CAO Zhen, GAO Long, HAN Minghong. Study on visualization of supersonic flame using Three Dimensional Laser–Induced Fluorescence (3DLIF)[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 30-36. DOI: 10.11729/syltlx20210150 |
[4] | JIANG Hao, WANG Bofu, CHONG Kai Leong, LU Zhiming. Reconstruction of turbulent fields based on super-resolution reconstruction method[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 102-109. DOI: 10.11729/syltlx20210185 |
[5] | ZHU Haijun, WANG Qian, MEI Xiaohan, WU Yu, ZHAO Changying. A review on flow field velocimetry based on high-speed schlieren/shadowgraph systems[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 49-73. DOI: 10.11729/syltlx20210110 |
[6] | SONG Erzhuang, LEI Qingchun, FAN Wei. A review on three-dimensional flame measurements based on tomography[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 1-11. DOI: 10.11729/syltlx20190135 |
[7] | Wang Jinhua, Nie Yaohui, Chang Min, Zhang Meng, Huang Zuohua. Network topology analysis on wrinkled structure of turbulent premixed Bunsen flame[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 19-25, 63. DOI: 10.11729/syltlx20170147 |
[8] | Huang Zhenli, Zhou Weihu, Qu Zhaosong. Study on three dimensional laser-induced fluorescence (3DLIF) techniques and its instrument[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 1-14. DOI: 10.11729/syltlx20160173 |
[9] | HUANG Hui-ming, LIU Xiang-yong, MA Jun, SONG Jin. The improvement method in 3-D measurement of airplane free-spin[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 77-81. DOI: 10.3969/j.issn.1672-9897.2013.02.015 |
[10] | CHEN Zhao, GUO Yong-cai, GAO Chao. Principle and technology of three-dimensional PIV[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 77-82,105. DOI: 10.3969/j.issn.1672-9897.2006.04.015 |
1. |
幸文婷,朱赤,叶晓明,吴杰俊. 基于自制设备的能源与动力工程测试技术实验课程设计. 实验科学与技术. 2023(04): 105-110 .
![]() | |
2. |
李涛,吴颖,余妍熹. 重力加速度对活塞式压力计准确性的影响. 海峡科技与产业. 2018(01): 61-62 .
![]() |