Liao Bin, Zhang Guifu, Wang Luhai, Zhu Yujian, Yang Jiming. Deformation and breakup behaviors of a drop in ambient liquid under impact[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 9-16. DOI: 10.11729/syltlx20160029
Citation: Liao Bin, Zhang Guifu, Wang Luhai, Zhu Yujian, Yang Jiming. Deformation and breakup behaviors of a drop in ambient liquid under impact[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 9-16. DOI: 10.11729/syltlx20160029

Deformation and breakup behaviors of a drop in ambient liquid under impact

More Information
  • Received Date: February 01, 2016
  • Revised Date: April 14, 2016
  • In this study, we carry out an experimental investigation of the behaviors as well as the mechanism of the liquid-liquid drop deformation and breakup process following an impact. With high speed photography, five distinct deformation and breakup modes are captured, for which the key factors that dominate the transition are quantitatively analyzed. The results show that similar deformation behaviors may occur for a proper combination of drop sizes, density ratios between drop and ambient fluid, interfacial tensions and free falling heights. Two non-dimensional parameters, i.e. Weber number (We) and Ohnesorge number (Oh), are calculated to estimate these effects. It is found that, similar deformation behaviors may have a strong correlation with the Weber number. After a further survey of the test range of present study (1 < We < 700, 0.001 < Oh < 0.005), it can be concluded that the deformation and breakup pattern is barely affected by the Ohnesorge number, whereas exhibits a strong dependence on the Weber number.
  • [1]
    Lane W R. Shatter of drops in streams of air[J]. Ind Eng Chem, 1951, 43(6):1312-1317. DOI: 10.1021/ie50498a022
    [2]
    Hinze J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes[J]. AIChE Journal, 1955, 1(3):289-295. DOI: 10.1002/(ISSN)1547-5905
    [3]
    Hanson A R, Domich E G, Adams H S. Shock tube investigation of the breakup of drops by air blasts[J]. Phys Fluids, 1963, 6(8):1070-1080. DOI: 10.1063/1.1706864
    [4]
    Simpkins P G, Bales E L.Water-drop response to sudden acce-lerations[J]. J Fluid Mech, 1972, 55(4):629-639. DOI: 10.1017/S0022112072002058
    [5]
    Krzeczkowski S A. Measurement of liquid droplet disintegration mechanisms[J]. Int J Multiphase Flow, 1980, 6(3):227-239. DOI: 10.1016/0301-9322(80)90013-0
    [6]
    Wierzba A, Takayama K. Experimental investigation of the aerodynamic breakup of liquid drops[J]. AIAA Journal, 1988, 26(11):1329-1335. DOI: 10.2514/3.10044
    [7]
    Yoshida T, Takayama K. Interaction of liquid droplets with planar shock waves[J]. Trans ASME J Fluids Engng, 1990, 112(4):481-486. DOI: 10.1115/1.2909431
    [8]
    Wierzba A. Deformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers[J]. Experiments in Fluids, 1990, 9(1):59-64. DOI: 10.1007%2FBF00575336
    [9]
    Hsiang L P, Faeth G M. Near-limit drop deformation and secondary breakup[J]. Int J Multiphase Flow, 1992, 18(5):635-652. DOI: 10.1016/0301-9322(92)90036-G
    [10]
    Hsiang L P, Faeth G M. Drop properties after secondary breakup[J]. Int J Multiphase Flow, 1993, 19(5):721-735. DOI: 10.1016/0301-9322(93)90039-W
    [11]
    Liu Z, Reitz R D. An analysis of the distorsion and breakup mechanisms of high speed liquid drops[J]. Int J Multiphase Flow, 1997, 23(4):631-650. DOI: 10.1016/S0301-9322(96)00086-9
    [12]
    Joseph D D, Belanger J, Beavers G S. Breakup of a liquid drop suddenly exposed to a high-speed airstream[J]. Int J Multiphase Flow, 1999, 25(6):1263-1303. https://www.researchgate.net/publication/222457588_Breakup_of_a_liquid_drop_suddenly_exposed_to_a_high-speed_airstream
    [13]
    Lee C H, Reitz R D. An experomental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream[J]. Int J Multiphase Flow, 2000, 26(2):229-244. DOI: 10.1016/S0301-9322(99)00020-8
    [14]
    Joseph D D, Beavers G S, Funada T. Rayleigh-Taylor instability of viscoelastic drops at high Weber numbers[J]. J Fluid Mech, 2002, 453:109-132. https://www.researchgate.net/publication/231787206_Rayleigh-Taylor_instability_of_viscoelastic_drops_at_high_Weber_numbers
    [15]
    Theofanous T G, Li G J, Dinh T N. Aerobreakup in rarefied supersonic gas flows[J]. Trans ASME J Fluids Engng, 2004, 126(4):516-527. DOI: 10.1115/1.1777234
    [16]
    Theofanous T G, Li G J, Dinh T N, et al. Aerobreakup in disturbed subsonic and supersonic flow fields[J]. J Fluid Mech, 2007, 593:131-170. https://www.researchgate.net/profile/Guangjun_Li2/publication/232005867_Aerobreakup_in_disturbed_subsonic_and_supersonic_flow_fields/links/564216c908aebaaea1f8b869.pdf?origin=publication_detail
    [17]
    Theofanous T G, Li G. On the physics of aerobreakup[J]. Phys Fluids, 2008, 20(5):052103. DOI: 10.1063/1.2907989
    [18]
    Pilch M, Erdman C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop[J]. Int J Multiphase Flow, 1987, 13(6):741-757. DOI: 10.1016/0301-9322(87)90063-2
    [19]
    Gelfand B E. Droplet breakup phenomena in flows with velocity lag[J]. Progress in Energy and Combustion Science, 1996, 22(3):201-265. DOI: 10.1016/S0360-1285(96)00005-6
    [20]
    Guildenbecher D R, Lopez-Rivera C, Sojka P E. Secondary ato-mization[J]. Experiments in Fluids, 2009, 46(3):371-402. DOI: 10.1007/s00348-008-0593-2
    [21]
    Majithia A K, Hall S, Harper L, et al. Droplet breakup quantification and processes in constant and pulsed air flows[C]//Proceedings of the 22nd Conference on Liquid Atomization and Spray Systems (ILASS-Europe), Como Lake, Italy, 2008.
    [22]
    Kulkarni V, Sojka P E. Bag breakup of low viscosity drops in the presence of a continuous air jet[J]. Phys Fluids, 2014, 26(7):072103. DOI: 10.1063/1.4887817
    [23]
    Mohit J, Surya P R, Gaurav T, et al. Secondary breakup of a drop at moderate Weber numbers[J]. Proceedings of the Royal Society A, 2015, 147:20140930. https://www.researchgate.net/publication/276177709_Secondary_breakup_of_a_drop_at_moderate_Weber_numbers
    [24]
    Patel P D, Theofanous T G. Hydrodynamic fragmentation of drops[J]. J Fluid Mech, 1981, 103:307-323. http://www.osti.gov/scitech/biblio/5273464
    [25]
    Hsiang L P, Faeth G M. Drop deformation and breakup due to shock wave and steady disturbances[J]. Int J Multiphase Flow, 1995, 21(4):545-560. DOI: 10.1016/0301-9322(94)00095-2
    [26]
    Landeau M, Deguen R, Olson P. Experiments on the fragmentation of a buoyant liquid volume in another liquid[J]. J Fluid Mech, 2014, 749:478-518. DOI: 10.1017/jfm.2014.202
    [27]
    熊燃华, 许明, 李耀发, 等.液-液两相介质中液滴在冲击作用下的演变过程[J].中国科学:物理学力学天文学, 2010, 40(6):773-780. http://phys.scichina.com:8083/sciG/EN/Y2010/V40/I6/773

    Xiong R H, Xu M, Li Y F, et al. The deformation and breakup of a drop-in-liquid under an impact loading[J]. Science China Phys, Mech and Astron, 2010, 40(6):773-780. http://phys.scichina.com:8083/sciG/EN/Y2010/V40/I6/773
    [28]
    Andreas J M, Hauser E A, Tucker W B. Boundary tension by pendant drops[J]. J Phys Chem, 1938, 42(8):1001-1019. http://www.researchgate.net/publication/231423689_Boundary_Tension_by_Pendant_Drops

Catalog

    Article Metrics

    Article views (335) PDF downloads (9) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close