Citation: | LIAN Huan, GU Hongbin, ZHOU Ruixu, LI Tuo, LI Zhongpeng. Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 97-108. DOI: 10.11729/syltlx20200069 |
[1] |
BUILDER C H. On the thermodynamic spectrum of airbreath-ing propulsion[R]. AIAA 1964-243, 1964. doi: 10.2514/6.1964-243
|
[2] |
HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Washington, DC: AIAA, Inc., 1994. doi: 10.2514/4.470356
|
[3] |
MERCIER R, RONALD T. Hypersonic technology (HyTech) program overview[R]. AIAA 1998-1566, 1998. doi: 10.2514/6.1998-1566
|
[4] |
乐嘉陵, 胡欲立, 刘陵. 双模态超燃冲压发动机研究进展[J]. 流体力学实验与测量, 2000, 14(1): 1-12. DOI: 10.3969/j.issn.1672-9897.2000.01.001
LE J L, HU Y L, LIU L. Investigation of possibilities in developing dual-mode scramjets[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(1): 1-12. doi: 10.3969/j.issn.1672-9897.2000.01.001
|
[5] |
刘陵, 刘敬华, 张榛, 等. 超声速燃烧与超声速燃烧冲压发动机[M]. 西安: 西北工业大学出版社, 1993.
|
[6] |
冯志高, 关成启, 张红文. 高超声速飞行器概论[M]. 北京: 北京理工大学出版社, 2016.
FENG Z G, GUAN C Q, ZHANG H W. An introduction to hypersonic aircraft[M]. Beijing: Beijing institute of technology press, 2016.
|
[7] |
SULLINS G A. Demonstration of mode transition in a scramjet combustor[J]. Journal of Propulsion and Power, 1993, 9(4): 515-520. doi: 10.2514/3.23653
|
[8] |
PRATT D, HEISER W. Isolator-combustor interaction in a dual-mode scramjet engine[R]. AIAA 1993-358, 1993. doi: 10.2514/6.1993-358
|
[9] |
张鹏, 俞刚. 超燃燃烧室一维流场分析模型的研究[J]. 流体力学实验与测量, 2003, 17(1): 88-92. DOI: 10.3969/j.issn.1672-9897.2003.01.022
ZHANG P, YU G. The study of one-dimensional flow analysis model of the combustor in supersonic combustion experiments[J]. Experiments and Measurements in Fluid Mechanics, 2003, 17(1): 88-92. doi: 10.3969/j.issn.1672-9897.2003.01.022
|
[10] |
郑小梅, 徐大军, 蔡国飙. 超燃冲压发动机性能的初步分析[J]. 航空学报, 2007, 28(S1): 35-41. DOI: 10.3321/j.issn:1000-6893.2007.z1.007
ZHENG X M, XU D J, CAI G B. A preliminary study on hypersonic airbreathing engine performance[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(S1): 35-41. doi: 10.3321/j.issn:1000-6893.2007.z1.007
|
[11] |
余勇, 刘卫东, 王振国. 超声速燃烧室性能一维数值模拟[J]. 流体力学实验与测量, 2004, 18(3): 36-41. DOI: 10.3969/j.issn.1672-9897.2004.03.008
YU Y, LIU W D, WANG Z G. A one-dimensional numerical analysis of supersonic combustor performance[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(3): 36-41. doi: 10.3969/j.issn.1672-9897.2004.03.008
|
[12] |
陈军. Ma4~7双模态冲压发动机燃烧室热力工作过程与性能潜力研究[D]. 四川绵阳: 中国空气动力研究与发展中心, 2016.
CHEN J. The relationship between thermal process and potential performance in dual-mode scramjet at Ma4~7[D]. Mianyang, Sichuan: China Aerodynamics Research and Development Center, 2016.
|
[13] |
陈强, 陈立红, 顾洪斌, 等. 释热分布对超燃冲压发动机性能的影响及优化[J]. 推进技术, 2009, 30(2): 135-138. DOI: 10.3321/j.issn:1001-4055.2009.02.002
CHEN Q, CHEN L H, GU H B, et al. Investigation of the effect and optimization of heat release distributions in the combustor on scramjet performance[J]. Journal of Propulsion Technology, 2009, 30(2): 135-138. doi: 10.3321/j.issn:1001-4055.2009.02.002
|
[14] |
MATSUO K, MIYAZATO Y, KIM H D. Shock train and pseudo-shock phenomena in internal gas flows[J]. Progress in Aerospace Sciences, 1999, 35(1): 33-100. doi: 10.1016/S0376-0421(98)00011-6
|
[15] |
WALTRUP P J, BILLIG F S. Structure of shock waves in cylindrical ducts[J]. AIAA Journal, 1973, 11(10): 1404-1408. doi: 10.2514/3.50600
|
[16] |
CARROLL B F, DUTTON J C. Characteristics of multiple shock wave/turbulent boundary-layer interactions in rectangular ducts[J]. Journal of Propulsion and Power, 1990, 6(2): 186-193. doi: 10.2514/3.23243
|
[17] |
CARROLL B F, DUTTON J C. Turbulence phenomena in a multiple normal shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 1992, 30(1): 43-48. doi: 10.2514/3.10880
|
[18] |
CARROLL B F, LOPEZ-FERNANDEZ P A, DUTTON J C. Computations and experiments for a multiple normal shock/boundary-layer interaction[J]. Journal of Propulsion and Power, 1993, 9(3): 405-411. doi: 10.2514/3.23636
|
[19] |
SMART M. Scramjet isolators[R]. RTO-EN-AVT-185, 2010.
|
[20] |
WIETING A R. Exploratory study of transient upstart phenomena in a three-dimensional fixed-geometry scramjet engine[R]. NASA-TN-D-8156, 1976. https://ntrs.nasa.gov/citations/19760013056
|
[21] |
RODI P E, EMAMI S, TREXLER C A. Unsteady pressure behavior in a ramjet/scramjet inlet[J]. Journal of Propulsion and Power, 1996, 12(3): 486-493. doi: 10.2514/3.24061
|
[22] |
DO H, IM S K, MUNGAL M G, et al. The influence of boundary layers on supersonic inlet flow unstart induced by mass injection[J]. Experiments in Fluids, 2011, 51(3): 679-691. doi: 10.1007/s00348-011-1077-3
|
[23] |
田野, 杨顺华, 邓维鑫, 等. 超燃冲压发动机燃烧室空气节流技术研究[J]. 推进技术, 2014, 35(4): 499-506. DOI: 10.13675/j.cnki.tjjs.2014.03.014
TIAN Y, YANG S H, DENG W X, et al. A study on air throttling technology in scramjet combustor[J]. Journal of Propulsion Technology, 2014, 35(4): 499-506. doi: 10.13675/j.cnki.tjjs.2014.03.014
|
[24] |
MITANI T, CHINZEI N, KANDA T. Reaction and mixing-controlled combustion in scramjet engines[J]. Journal of Propulsion and Power, 2001, 17(2): 308-314. doi: 10.2514/2.5743
|
[25] |
CHUN J, SCHEUERMANN T, VON WOLFERSDORF J, et al. Experimental study on combustion mode transition in a scramjet with parallel injection[R]. AIAA 2006-8063, 2006. doi: 10.2514/6.2006-8063
|
[26] |
TAKAHASHI S, DEMISE S, OSHITA M, et al. Correlation between heat flux distribution and combustion mode in a scramjet combustor[J]. Physics Letters B, 2001, 663(s1-2): 107-110. http://www.irgrid.ac.cn/handle/1471x/699393
|
[27] |
LE D B, GOYNE C P, KRAUSS R H, et al. Experimental study of a dual-mode scramjet isolator[J]. Journal of Propulsion and Power, 2008, 24(5): 1050-1057. doi: 10.2514/1.32591
|
[28] |
ZHANG C L, CHANG J T, MA J X, et al. Effect of Mach number and equivalence ratio on the pressure rising variation during combustion mode transition in a dual-mode combustor[J]. Aerospace Science and Technology, 2018, 72: 516-524. doi:10.1016/j.ast.2017. 11.042
|
[29] |
肖保国, 李莉, 张顺平, 等. 超燃冲压发动机燃烧模态转换直连式实验研究[J]. 推进技术, 2019, 40(2): 339-346. DOI: 10.13675/j.cnki.tjjs.170760
XIAO B G, LI L, ZHANG S P, et al. Direct-connect experimental investigation of combustion mode transition for scramjet engine[J]. Journal of Propulsion Technology, 2019, 40(2): 339-346. doi: 10.13675/j.cnki.tjjs.170760
|
[30] |
FOTIA M L. Mechanics of combustion mode transition in a direct-connect ramjet-scramjet experiment[J]. Journal of Propulsion and Power, 2014, 31(1): 69-78. doi: 10.2514/1.B35171
|
[31] |
ZHANG C L, CHANG J T, FENG S, et al. Pressure rising slope variation accompanying with combustion mode transition in a dual-mode combustor[J]. Aerospace Science and Technology, 2017, 68: 370-379. doi: 10.1016/j.ast.2017.05.034
|
[32] |
ZHANG C, YANG Q C, CHANG J T, et al. Nonlinear characteristics and detection of combustion modes for a hydrocarbon fueled scramjet[J]. Acta Astronautica, 2015, 110: 89-98. doi: 10.1016/j.actaastro.2014.11.023
|
[33] |
CAO R F, CHANG J T, BAO W, et al. Analysis of combustion mode and operating route for hydrogen fueled scramjet engine[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5928-5935. doi: 10.1016/j.ijhydene.2013.02.135
|
[34] |
BAO W, YANG Q C, CHANG J T, et al. Dynamic characteristics of combustion mode transitions in a strut-based scramjet combustor model[J]. Journal of Propulsion and Power, 2013, 29(5): 1244-1248. doi: 10.2514/1.B34921
|
[35] |
ZHANG C L, CHANG J T, ZHANG Y S, et al. Flow field characteristics analysis and combustion modes classification for a strut/cavity dual-mode combustor[J]. Acta Astronautica, 2017, 137: 44-51. doi: 10.1016/j.actaastro.2017.03.023
|
[36] |
YANG Q C, HU J C, CHANG J T, et al. Experimental study on combustion mode transition effects in a strut-based scramjet combustor[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(4): 764-771. doi: 10.1177/0954410014539288
|
[37] |
CAO R F, CHANG J T, TANG J F, et al. Study on combustion mode transition of hydrogen fueled dual-mode scramjet engine based on thermodynamic cycle analysis[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21251-21258. doi: 10.1016/j.ijhydene.2014.10.082
|
[38] |
YANG Q C, CHANG J T, BAO W, et al. A mechanism of combustion mode transition for hydrogen fueled scramjet[J]. International Journal of Hydrogen Energy, 2014, 39(18): 9791-9797. doi: 10.1016/j.ijhydene.2014.04.090
|
[39] |
FOTIA M L, DRISCOLL J F. Isolator-combustor interactions in a direct-connect ramjet-scramjet experiment[J]. Journal of Propulsion and Power, 2012, 28(1): 83-95. doi: 10.2514/1.B34367
|
[40] |
FOTIA M L, DRISCOLL J F. Ram-scram transition and flame/shock-train interactions in a model scramjet experiment[J]. Journal of Propulsion and Power, 2012, 29(1): 261-273. doi: 10.2514/1.B34486
|
[41] |
浮强, 宋文艳, 石德永, 等. 来流总温对双模态燃烧室模态转换边界的影响[J]. 航空动力学报, 2019, 34(5): 1119-1126. DOI: 10.13224/j.cnki.jasp.2019.05.018
FU Q, SONG W Y, SHI D Y, et al. Effects of incoming flow total temperature on mode transition boundary in dual mode scramjet combustor[J]. Journal of Aerospace Power, 2019, 34(5): 1119-1126. doi: 10.13224/j.cnki.jasp.2019.05.018
|
[42] |
MASUMOTO R, TOMIOKA S, KUDO K, et al. Experi-mental study on combustion modes in a supersonic combustor[J]. Journal of Propulsion and Power, 2011, 27(2): 346-355. doi: 10.2514/1.B34020
|
[43] |
MENG Y, GU H B, ZHUANG J H, et al. Experimental study of mode transition characteristics of a cavity-based scramjet combustor during acceleration[J]. Aerospace Science and Technology, 2019, 93: 105316. doi: 10.1016/j.ast.2019.105316
|
[44] |
潘余, 李大鹏, 刘卫东, 等. 超燃冲压发动机燃烧模态转换试验研究[J]. 爆炸与冲击, 2008, 28(4): 293-297. DOI: 10.3321/j.issn:1001-1455.2008.04.002
PAN Y, LI D P, LIU W D, et al. Combustion mode transition in a scramjet engine[J]. Explosion and Shock Waves, 2008, 28(4): 293-297. doi:10. 3321/j.issn:1001-1455.2008.04.002
|
[45] |
KANDA T, CHINZEI N, KUDO K, et al. Dual-mode operations in a scramjet combustor[J]. Journal of Propulsion and Power, 2004, 20(4): 760-763. doi: 10.2514/1.3683
|
[46] |
KOBAYASHI K, TOMIOKA S, KATO K, et al. Performance of a dual-mode combustor with multistaged fuel injection[J]. Journal of Propulsion and Power, 2006, 22(3): 518-526. doi: 10.2514/1.19294
|
[47] |
KOUCHI T, MASUYA G, MITANI T, et al. Mechanism and control of combustion-mode transition in a scramjet engine[J]. Journal of Propulsion and Power, 2012, 28(1): 106-112. doi: 10.2514/1.B34172
|
[48] |
WANG Z G, SUN M B, WANG H B, et al. Mixing-related low frequency oscillation of combustion in an ethylene-fueled supersonic combustor[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2137-2144. doi: 10.1016/j.proci.2014.09.005
|
[49] |
SUN M B, WANG Z G, LIANG J H, et al. Flame characteristics in supersonic combustor with hydrogen injection upstream of cavity flameholder[J]. Journal of Propulsion and Power, 2008, 24(4): 688-696. doi: 10.2514/1.34970
|
[50] |
MICKA D J, DRISCOLL J F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2397-2404. doi: 10.1016/j.proci.2008.06.192
|
[51] |
WANG Z P, LI F, GU H B, et al. Experimental study on the effect of combustor configuration on the performance of dual-mode combustor[J]. Aerospace Science and Technology, 2015, 42: 169-175. doi: 10.1016/j.ast.2015.01.008
|
[52] |
YUAN Y M, ZHANG T C, YAO W, et al. Characterization of flame stabilization modes in an ethylene-fueled supersonic combustor using time-resolved CH* chemiluminescence[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2919-2925. doi: 10.1016/j.proci.2016.07.040
|
[53] |
NAKAYA S, KINOSHITA R, LEE J, et al. Analysis of supersonic combustion characteristics of ethylene/methane fuel mixture on high-speed measurements of CH* chemiluminescence[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3749-3756. doi: 10.1016/j.proci.2018.09.011
|
[54] |
SHE Z S, ZOU H Y, XIAO M J, et al. Prediction of compressible turbulent boundary layer via a symmetry-based length model[J]. Journal of Fluid Mechanics, 2018, 857: 449-468. doi: 10.1017/jfm.2018.710
|
[55] |
LI X, TONG F L, YU C P, et al. Statistical analysis of temperature distribution on vortex surfaces in hypersonic turbulent boundary layer[J]. Physics of Fluids, 2019, 31(10): 106101. DOI: 10.1063/1.5115541
|
[56] |
周芮旭, 连欢, 顾洪斌, 等. 激光诱导荧光聚焦纹影系统及超声速燃烧流场应用[J]. 气体物理, 2020, 5(2): 14-19. DOI: 10.19527/j.cnki.2096-1642.0799
ZHOU R X, LIAN H, GU H B, et al. Laser-induced fluorescence focusing schlieren system and its application in scramjet combustor[J]. Physics of Gases, 2020, 5(2): 14-19. doi: 10.19527/j.cnki.2096-1642.0799
|
[57] |
LIAN H, GU H B, YUE L J, et al. Characterization of combustion oscillations in a cavity flame holder during acceleration experiments[C]//Proc of the 1st International Conference on High-Speed Vehicle Science Technology.2018.
|
[1] | HE Chao, SUN Peng, LIN Jingzhou, XU Xiaobin, CHEN Lei. Design and application of the dynamic stage separation device in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 90-95. DOI: 10.11729/syltlx20200119 |
[2] | Wang Xiaopeng, Zhang Chen'an, Liu Chunfeng, Wang Famin, Ye Zhengyin. Support interference and correction of cold-flow force test for air-breathing hypersonic vehicle in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 27-33. DOI: 10.11729/syltlx20180116 |
[3] | Ding Feng, Liu Jun, Shen Chibing, Liu Zhen, Chen Shaohua, Huang Wei. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26. DOI: 10.11729/syltlx20180080 |
[4] | Xu Xiaobin, Shu Haifeng, Xie Fei, Wang Xiong, Guo Leitao. Research progress on aerodynamic test technology of hypersonic wind tunnel for air-breathing aerocraft[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 29-40. DOI: 10.11729/syltlx20180053 |
[5] | Deng Fan, Ye Youda, Jiao Zihan, Liu Hui. Research on HIFiRE project's hypersonic vehicle integrated design of aerodynamic and scramjet propulsion[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 73-80. DOI: 10.11729/syltlx20160125 |
[6] | JIANG Wei, YANG Yun-jun, CHEN He-wu. Investigations on aerodynamics of the spike-tipped hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 28-32,53. DOI: 10.3969/j.issn.1672-9897.2011.06.006 |
[7] | HE Kai-feng, WANG Qing, QIAN Wei-qi, HE Zheng-chun. Review of aerodynamic and aero-thermodynamic parameter estimation research for hypersonic aircraft[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5): 99-104. DOI: 10.3969/j.issn.1672-9897.2011.05.020 |
[8] | KHARITONOV A M, ZVEGINTSEV V I, CHIRKASHENKO V F, BRODETSKY M D, MAZHUL I I, VASENEV L G, MUYLAERT J M, KORDULLA W, PAULAT J C. Aerodynamic investigation of aerospace vehicles in the new hypersonic wind tunnel AT-303 at ITAM[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 10-19. DOI: 10.3969/j.issn.1672-9897.2006.04.002 |
[9] | Heat flux measurement test of the hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(1): 29-32,37. DOI: 10.3969/j.issn.1672-9897.2004.01.007 |
[10] | The calculations of aerodynamic heating and viscous friction forces on the surface of hypersonic flight vehicle[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(1): 8-20. DOI: 10.3969/j.issn.1672-9897.2002.01.002 |
1. |
管新蕾,孙小姣,王维,王利军. 弧形涡流发生器对湍流相干结构及强化换热的影响. 实验流体力学. 2024(04): 104-112 .
![]() | |
2. |
朱寅鑫,彭文强,罗振兵,康赢,赵志杰,程盼,刘杰夫. 全叶高合成双射流对大折转角扩压叶栅的影响. 航空学报. 2023(12): 84-95 .
![]() | |
3. |
蔡明,高丽敏,刘哲,黎浩学,陈顺. 亚声速压气机平面叶栅及其改型的吹风试验. 实验流体力学. 2021(02): 36-42 .
![]() |