Wang Zonghao, Huang Jie, Shi Anhua, Song Qiang, Liao Dongjun, Liu Sen. Free flight experiment on boundary layer transition of 7° half angle cone at Mach 6[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 58-64. DOI: 10.11729/syltlx20180185
Citation: Wang Zonghao, Huang Jie, Shi Anhua, Song Qiang, Liao Dongjun, Liu Sen. Free flight experiment on boundary layer transition of 7° half angle cone at Mach 6[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 58-64. DOI: 10.11729/syltlx20180185

Free flight experiment on boundary layer transition of 7° half angle cone at Mach 6

More Information
  • Received Date: November 18, 2018
  • Revised Date: April 18, 2019
  • A series of boundary layer transition measurements of the 7° half angle cone at Mach 6 in the Aero-physic Range were conducted. The models are made of aluminum alloy with black oxidation or low thermal conductivity coating. The base diameter of the cone is 33mm, and the radius of the nose tip is among 0.27~2.50mm. The parameter covers Mach number 4.89~6.63, Unit Reynolds number 4.8×107/m~5.2×107/m, and the total angle of attack 0.8°~5.8°. The boundary layer shadowgraph and surface inferred images which reflect the transition line configuration were obtained, and the transition Reynolds number was calculated to be 2.4×106~5.6×106. The results indicate that:the transition Reynolds number decreases by enlarging the angle of attack, certain nose tip scale would delay the transition.
  • [1]
    Lau K Y. Hypersonic boundary-layer transition:application to high-speed vehicle design[J]. Journal of Spacecraft and Rockets, 2008, 45(2):176-183. DOI: 10.2514/1.31134
    [2]
    Wilkins M E, Darsow J F. Finishing and inspection of model surfaces for boundary-layer-transition tests[R]. NASA Memo 1-19-59A, 1959.
    [3]
    James C S. Boundary-layer transition on hollow cylinders in supersonic free flight as affected by Mach number and a screwthread type of surface roughness[R]. NASA Memo 1-20-59A, 1959.
    [4]
    Potter J L. Boundary-layer transition on supersonic cones in an aeroballistic range[J]. AIAA Journal, 1975, 13(3):270-277. DOI: 10.2514/3.49692
    [5]
    Sheetz N W Jr. Free-flight boundary layer transition investiga-tions at hypersonic speeds[R]. AIAA-1965-0127, 1965.
    [6]
    Reda D C. Boundary-layer transition experiments on sharp, slender cones in supersonic freeflight[J]. AIAA Journal, 1979, 17(8):803-810. DOI: 10.2514/3.61231
    [7]
    Reda D C, Wilder M C, Bogdanoff D W, et al. Aerothermo-dynamic testing of ablative reentry vehicle nosetip materials in hypersonic ballistic-range environments[R]. AIAA-2004-6829, 2004.
    [8]
    Grinstead J H, Wilder M C, Reda D C, et al. Advanced spectroscopic and thermal imaging instrumentation for shock tube and ballistic range facilities[R]. RTO-EN-AVT-186, 2010.
    [9]
    Reda D C, Wilder M C, Prabhu D K. Transition experiments on blunt bodies with isolated roughness elements in hypersonic flight[J]. Journal of Spacecraft and Rockets, 2010, 47(5):828-835. DOI: 10.2514/1.49112
    [10]
    Reda D C, Wilder M C, Prabhu D K. Transition experiments on slightly blunted cones with distributed roughness in hypersonic flight[J]. AIAA Journal, 2012, 50(10):2248-2254. DOI: 10.2514/1.J051616
    [11]
    Reda D C, Wilder M C, Prabhu D K. Transition experiments on blunt cones with distributed roughness in hypersonic flight[J]. Journal of Spacecraft and Rockets, 2013, 50(3):504-508. DOI: 10.2514/1.A32426
    [12]
    Wilder M C, Prabhu D K, Reda D C. The effects of surface roughness on turbulent heat transfer measured in hypersonic free flight[R]. AIAA-2014-0512, 2014.
    [13]
    Swanson T, Daniel D. Hypersonic boundary layer transition experiments in hypervelocity ballistic Range G[R]. AIAA-2016-2118, 2016.
    [14]
    柳森, 王宗浩, 谢爱民, 等.高超声速锥柱裙模型边界层转捩的弹道靶实验[J].实验流体力学, 2013, 27(6):26-31. DOI: 10.3969/j.issn.1672-9897.2013.06.005

    Liu S, Wang Z H, Xie A M, et al. Ballistic range experiments of hypersonic boundary layer transition on a cone-cylinder-flare configuration[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6):26-31. DOI: 10.3969/j.issn.1672-9897.2013.06.005
    [15]
    Wang Z H, Liu S, Xie A M, et al. Shadowgraph imaging and post-processing for hypersonic boundary layer transition in ballistic range[J]. Journal of Flow Visualization and Image Processing, 2015, 22(4):229-238. DOI: 10.1615/JFlowVisImageProc.2016016555
    [16]
    柳森, 黄洁, 李毅, 等.中国空气动力研究与发展中心的空间碎片超高速撞击试验研究进展[J].载人航天, 2011, 17(6):17-23. DOI: 10.3969/j.issn.1674-5825.2011.06.004

    Liu S, Huang J, Li Y, et al. Recent advancement of hypervelocity impact tests at HAI, CARDC[J]. Manned Spaceflight, 2011, 17(6):17-23. DOI: 10.3969/j.issn.1674-5825.2011.06.004
    [17]
    柳森, 谢爱民, 黄洁, 等.超高速碰撞碎片云的激光阴影照相技术[J].实验流体力学, 2005, 19(2):35-39. DOI: 10.3969/j.issn.1672-9897.2005.02.007

    Liu S, Xie A M, Huang J, et al. Laser shadowgraph for the visualization of hypervelocity impact debris cloud[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2):35-39. DOI: 10.3969/j.issn.1672-9897.2005.02.007
    [18]
    Settles G S. Schlieren and shadowgraph techniques:visualizing phenomena in transparent media[M]. Berlin:Springer-Verlag, 2001.
    [19]
    Muir J F, Trujillo A A. Experimental investigation of the effects of nose bluntness, free-stream unit Reynolds number, and angle of attack on cone boundary layer transition at a Mach number of 6[R]. AIAA-72-0216, 1972.
    [20]
    陈坚强, 涂国华, 张毅锋, 等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3):311-337. DOI: 10.7638/kqdlxxb-2017.0030

    Chen J Q, Tu G H, Zhang Y F, et al. Hypersnonic boundary layer transition:what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3):311-337. DOI: 10.7638/kqdlxxb-2017.0030
    [21]
    Bountin D A, Shiplyuk A N, Sidorenko A A. Experimental investigations of disturbance development in the hypersonic boundary layer on a conical model[C]//Laminar-Turbulent Transition: IUTAM Symposium. 1999: 475-480.
  • Related Articles

    [1]KONG Xiaoping, CHEN Wei, LUO Shichao, LYU Minglei, QU Tao, WU Liyin. Study on calibration of effective test time in high enthalpy shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 1-7. DOI: 10.11729/syltlx20230087
    [2]YANG Yang, QIAN Fengxue, ZHANG Changfeng, LIU Zhiyong. Research on wind tunnel test technology of sonic boom measurement based on probe[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 92-100. DOI: 10.11729/syltlx20210193
    [3]CHEN Aiguo, TIAN Ying, WANG Jie, YANG Yanguang, LI Zhihui, LI Zhonghua, LI Zhenqian. Measurement investigation of rotational temperature and vibrational temperature in hypersonic wind tunnel rarefied flow field[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20210192
    [4]LI Qiang, WAN Bingbing, ZHUANG Yu, ZHAO Jinshan. Experimental study on influence of incoming total temperature on hypersonic boundary layer transition[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220081
    [5]ZHANG Ying, LIU Nan. Numerical simulation and experimental test of unsteady flow field for oscillating vanes gust generator in high-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 83-89. DOI: 10.11729/syltlx20210093
    [6]LAI Qingren, LIU Qinglin, GUO Long, ZHANG Pingtao, YI Xian. Icing and anti-icing test technology of aero-engine based on large-scale icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 1-8. DOI: 10.11729/syltlx20200067
    [7]CAI Ming, GAO Limin, LIU Zhe, LI Haoxue, CHEN Shun. Cascade testing for a subsonic compressor linear cascade and its modification[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 36-42. DOI: 10.11729/syltlx20200079
    [8]Fu Yang'aoxiao, Dong Weizhong, Ding Mingsong, Liu Qingzong, Gao Tiesuo, Jiang Tao. Numerical simulation of thermochemical non-equilibrium flow field in arc-jet tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 1-12. DOI: 10.11729/syltlx20180138
    [9]Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088
    [10]Wu Jinhua, Sun Haisheng, Shen Zhihong, Jiang Yubiao. 旋转流场下的振荡动导数试验技术研究[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 54-58. DOI: 10.11729/syltlx20130057
  • Cited by

    Periodical cited type(2)

    1. 雒卫廷. 大展弦比复合材料机翼结构细节抗疲劳优化. 兵器装备工程学报. 2020(03): 164-168 .
    2. 苗磊,李建强,李耀华,何成军,张诣,徐志伟. 风洞天平静态校准与使用状态一致性研究. 中国测试. 2020(08): 158-164 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (227) PDF downloads (33) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close