Lyu Junming, Li Fei, Lin Xin, Cheng Xiaoli, Yu Xilong, Yu Jijun. Measurement and validation of nitrogen radiative intensity in shock tube[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 25-30, 111. DOI: 10.11729/syltlx20180156
Citation: Lyu Junming, Li Fei, Lin Xin, Cheng Xiaoli, Yu Xilong, Yu Jijun. Measurement and validation of nitrogen radiative intensity in shock tube[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 25-30, 111. DOI: 10.11729/syltlx20180156

Measurement and validation of nitrogen radiative intensity in shock tube

More Information
  • Received Date: October 22, 2018
  • Revised Date: January 04, 2019
  • The radiative energy emitted and absorbed by high temperature gas in the shock layer must be considered in the thermal protection system design of hypervelocity vehicles. Efficient evaluation methods are needed to predict the radiative heat flux. Absolute radiance measurement in ground facilities is an important way to understand the physics of the high enthalpy flow and to improve the numerical models. Radiance calibration techniques have been developed in a combustion-driven shock tube. High resolution spectral radiative intensities have been measured in rich N2 environment to validate the numerical models. Detailed radiance spectral structures have been acquired at shock velocity 5.70 and 6.20km/s. It is found that the non-equilibrium process behind the shock affects the gas radiation remarkably. Numerical simulations under corresponding experimental conditions have been conducted using an in-house built code solving Navier-Stokes equations with chemical reaction models and radiation models. The results show that computational results agree well with experimental data.
  • [1]
    Anderson J D. An engineering survey of radiating shock layers[J]. AIAA Journal, 1969, 7(9):1665-1675. DOI: 10.2514/3.5373
    [2]
    Gocken T. N2-CH4-Ar chemical reaction model for simulations of atmospheric entry to Titan[R]. AIAA-2004-2469, 2004.
    [3]
    Park C. Assessment of two-temperature kinetic model for dissociating and weakly ionizing nitrogen[J]. Journal of Thermophysics and Heat Transfer, 1988, 2(1):8-16. http://cn.bing.com/academic/profile?id=ec4fcb6247d979a1d19f907e88025a9c&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    Park C. Assessment of two-temperature kinetic model for ionizing air[J]. Journal of Thermophysics and Heat Transfer, 1989, 3(3):233-244. DOI: 10.2514/3.28771
    [5]
    Gnoffo P A, Gupta R N, Shinn J L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium[R]. NASA TP-2867, 1989.
    [6]
    Hartung L C. Development of a nonequilibrium radiative heating prediction method for coupled flowfield solutions[J]. Journal Thermophysics and Heat Transfer, 1992, 6(4):618-625. DOI: 10.2514/3.11542
    [7]
    Sharma S. Modeling of nonequilibrium radiation phenomena:an assessment[J]. Journal of Thermophysics and Heat Transfer, 1996, 10(3):385-396. DOI: 10.2514/3.802
    [8]
    Cruden B A. Absolute radiation measurements in earth and mars entry conditions[R]. STO-AVT-218-VKI, 2014.
    [9]
    Parker R, MacLean M, Dufrene A, et al. Emission measurements from high enthalpy flow on a cylinder in the LENS-XX hypervelocity expansion tunnel[R]. AIAA-2013-1058, 2013.
    [10]
    Brandis A M, Cruden B A, Prabhu D, et al. Analysis of air radiation measurements obtained in the EAST and X2 shock tube facilities[R]. AIAA-2010-4510, 2010.
    [11]
    Takayanagi H, Fujita K, Nishikino Y. Shock radiation measurements from carbon dioxide flow from VUV to IR region[R]. AIAA-2011-3631, 2011.
    [12]
    Brandis A, Johnston C, Cruden B. Non-equilibrium radiation for Earth entry[R]. AIAA-2016-3690, 2016.
    [13]
    Cruden B, Brandis A. Measurement and prediction of radiative non-equilibrium for air shocks between 7-9km/s[R]. AIAA-2017-4535, 2017.
    [14]
    Brandis A, Cruden B. Titan atmospheric entry radiative heating[R]. AIAA-2017-4534, 2017.
    [15]
    Brandis A M, Cruden B A. Shock tube radiation measurements in nitrogen[R]. AIAA-2018-3437, 2018.
    [16]
    Johnston C O. Nonequilibrium shock-layer radiative heating for Earth and Titan entry[D]. Blacksburg: Virginia Tech, 2006.
  • Cited by

    Periodical cited type(5)

    1. 杨文斌,张华磊,齐新华,车庆丰,周江宁,白冰,陈爽,母金河. 非平衡等离子体流场相干反斯托克斯拉曼散射光谱计算及振转温度测量. 物理学报. 2024(15): 50-59 .
    2. 唐维鑫,丁涛,李东鲜,张昌华,李萍. 高速冲击波下的高温空气辐射光谱研究. 光谱学与光谱分析. 2024(10): 2739-2744 .
    3. 张森豪,许以欣,张仕忠,张晓源,林鑫,李进平,卢会群,李飞,余西龙. 6 km/s运动激波波后高温空气辐射特性实验研究. 空天技术. 2023(03): 15-20+39 .
    4. 吕俊明,李飞,李齐,程晓丽. 火星大气高温光谱建模与非平衡辐射热流预测. 航空学报. 2022(03): 35-46 .
    5. 闵昌万,苗萌. 高速飞行器尾部观星窗口选择研究. 航空兵器. 2021(05): 1-6 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (207) PDF downloads (9) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close