Zhu Xinxin, Yang Qingtao, Wang Hui, Yang Kai, Zhu Tao. Improvement of heat insulation structure in the slug calorimeter and test analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 34-40. DOI: 10.11729/syltlx20180071
Citation: Zhu Xinxin, Yang Qingtao, Wang Hui, Yang Kai, Zhu Tao. Improvement of heat insulation structure in the slug calorimeter and test analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 34-40. DOI: 10.11729/syltlx20180071

Improvement of heat insulation structure in the slug calorimeter and test analysis

More Information
  • Received Date: May 20, 2018
  • Revised Date: June 10, 2018
  • The heat insulation structure of the slug calorimeter was improved in order to enhance the measurement accuracy. The insulating sleeve with hollow structure was designed, which could excessively decrease the unstable lateral heat transfer. By designing package shell structure matched with the slug calorimeter, the heat insulation structure and heat transfer characteristics in calibration could be kept in the heat flux measurement. Numerical calculation analysis was given, which illustrates the validation of the improvement method. Based on the numerical calculation, the size of the slug calorimeter components was optimized. Then the calibration experiment was carried out. The results show that the test accuracy and precision of the slug calorimeter are improved greatly. Finally, the wind tunnel test was carried out. The test results show that the repeatability accuracy of the slug calorimeter is less than 3%. The deviation of measurement values from different slug calorimeters is less than 3% in the same fluid field. The deviation of measurement values between the slug calorimeter and the Gardon gage is less than 4% in the same fluid field.
  • [1]
    张松贺, 杨远剑, 王茂刚, 等.电弧风洞热/透波联合试验技术研究及应用[J].空气动力学学报, 2017, 35(1):141-145. DOI: 10.7638/kqdlxxb-2015.0146

    Zhang S H, Yang Y J, Wang M G, et al. Studies and applications of thermal/wave-transmission test technique in arc-heated wind tunnel[J]. Acta Aerodynamics Sinica, 2017, 35(1):141-145. DOI: 10.7638/kqdlxxb-2015.0146
    [2]
    侯玉柱, 郑京良, 董威.高超声速飞行器瞬态热试验[J].航空动力学报, 2010, 25(2):343-347. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201002017

    Hou Y Z, Zheng J L, Dong W. Transient test of aerodynamic heating for hypersonic vehicle[J]. Journal of Aerospace Power, 2010, 25(2):343-347. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201002017
    [3]
    韩海涛, 陈智, 胡龙飞, 等.基于高温热管的超燃燃烧室热防护结构[J].航空动力学报, 2017, 32(5):1043-1049. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201705003

    Han H T, Chen Z, Hu L F, et al. High temperature heat pipe enhanced thermal protection structure for scramjet combustion chamber[J]. Journal of Aerospace Power, 2017, 32(5):1043-1049. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201705003
    [4]
    刘强, 崔赢午, 陈志会, 等.高气动加热环境下运载器局部防热设计与试验研究[J].强度与环境, 2016, 43(1):54-59. DOI: 10.3969/j.issn.1006-3919.2016.01.010

    Liu Q, Cui Y W, Chen Z H, et al. The study on topical TPS design for hypersonic aerocraft[J]. Structure & Environment Engineering, 2016, 43(1):54-59. DOI: 10.3969/j.issn.1006-3919.2016.01.010
    [5]
    吴大方, 周岸峰, 郑力铭, 等.瞬态热冲击环境下金属蜂窝板结构的热防护特性[J].航空动力学报, 2014, 29(6):1261-1271. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201406002

    Wu D F, Zhou A F, Zheng L M, et al. Thermal protection performances of metallic honeycomb panel structure at transient at transient thermal shock environment[J]. Journal of Aerospace Power, 2014, 29(6):1261-1271. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201406002
    [6]
    张志豪, 孙得川.飞行器气动加热烧蚀工程计算[J].兵工学报, 2015, 36(10):1949-1954. DOI: 10.3969/j.issn.1000-1093.2015.10.017

    Zhang Z H, Sun D C. Calculation of aerodynamic heating and ablation of multi-layer thermal protection material[J]. Acta Armamentarii, 2015, 36(10):1949-1954. DOI: 10.3969/j.issn.1000-1093.2015.10.017
    [7]
    蒋友娣, 董葳, 陈勇.高超声速钝头体变熵流表面热流计算[J].航空动力学报, 2008, 23(9):1591-1594. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200809007

    Jiang Y D, Dong W, Chen Y. Surface heat flux calculation of variable entropy flow for hypersonic blunt bodies[J]. Journal of Aerospace Power, 2008, 23(9):1591-1594. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200809007
    [8]
    杨庆涛, 王辉, 朱新新, 等.无水冷条件下温度与热流复合传感器设计与试验[J].兵工学报, 2016, 37(2):193-202. DOI: 10.3969/j.issn.1000-1093.2016.02.001

    Yang Q T, Wang H, Zhu X X, et al. Design and test of a hybrid sensor for temperature and heat flux measurement without water-cooling[J]. Acta Armamentarii, 2016, 37(2):193-202. DOI: 10.3969/j.issn.1000-1093.2016.02.001
    [9]
    刘初平.气动热与热防护试验热流测量[M].北京:国防工业出版社, 2010.

    Liu C P. Heat flux measurement in aerothermodynamics and thermal protection test[M]. Beijing:National Defense Industry Press, 2010.
    [10]
    Hightower T M, Olivares R A, Philippidis D. Thermal capa-citance (slug) calorimeter theory including heat losses and other decaying processes[R]. NASA/TM-2008-215364.
    [11]
    Nawaz A, Santos J A. Assessing calorimeter evaluation methods in convective and radiative heat flux environment[R]. AIAA-2010-4905, 2010.
    [12]
    Nawaz A, Gorbunov S, Terrazas-Salinas I, et al. Investigation of slug calorimeter gap influence for plasma stream characterization[R]. AIAA-2012-3186, 2012.
    [13]
    杨庆涛, 白菡尘, 张涛, 等.隔热结构对塞块式量热计热流测量的影响[J].实验流体力学, 2014, 28(5):92-98. http://www.syltlx.com/CN/abstract/abstract10780.shtml

    Yang Q T, Bai H C, Zhang T, et al. Effects of adiabatic structure on heat flux measurement using a slug calorimeter[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(5):92-98. http://www.syltlx.com/CN/abstract/abstract10780.shtml
    [14]
    许考, 陈连忠.导管内塞式量热计热流测量试验及数值模拟研究[J].实验流体力学, 2015, 29(2):84-89. http://www.syltlx.com/CN/abstract/abstract10832.shtml

    Xu K, Chen L Z. Experimental and numerical simulation studies on heat flux measurement for slug calorimeters in the conduit[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2):84-89. http://www.syltlx.com/CN/abstract/abstract10832.shtml
    [15]
    吴登倍.接触热阻试验与数值模拟[D].北京: 北京交通大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10004-1011051030.htm

    Wu D B. Experiment and numerical simulation of thermal contact resistance[D]. Beijing: Beijing Jiaotong University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10004-1011051030.htm
    [16]
    Murthy A V, Tsai B K, Saunders R D. Radiative calibration of heat-flux sensors at NIST:facilities and techniques[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105(2):293-305. DOI: 10.6028/jres
    [17]
    朱新新, 王辉, 杨庆涛, 等.弧光灯热流标定系统的光学设计[J].光学学报, 2016, 36(11):234-240. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016123000051575

    Zhu X X, Wang H, Yang Q T, et al. Optical design of arc lamp heat flux calibration system[J]. Acta Optical Sinica, 2016, 36(11):234-240. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016123000051575
    [18]
    朱新新, 王辉, 刘洪波, 等.弧光灯热流标定系统光源的仿真设计[J].光学学报, 2016, 36(4):246-252. http://www.cqvip.com/QK/95626X/201604/668730557.html

    Zhu X X, Wang H, Liu H B, et al. Simulation design of the arc lamp system for heat flux sensor calibration[J]. Acta Optical Sinica, 2016, 36(4):246-252. http://www.cqvip.com/QK/95626X/201604/668730557.html
    [19]
    罗跃, 杨凯, 黄伟, 等.用于高温高压剪切流场的Gardon计研制[J].科学技术与工程, 2017, 17(29):139-143. DOI: 10.3969/j.issn.1671-1815.2017.29.020

    Luo Y, Yang K, Huang W, et al. Design and fabrication of Gardon gage used in shear flow field of high temperature/pressure[J]. Science Technology and Engineering, 2017, 17(29):139-143. DOI: 10.3969/j.issn.1671-1815.2017.29.020
    [20]
    张志成, 潘梅林, 刘初平, 等.高超声速气动热与热防护[M].北京:国防工业出版社, 2003.

    Zhang Z C, Pan M L, Liu C P, et al. Hypersonic aerothermodynamics and thermal protection[M]. Beijing:National Defense Industry Press, 2003.
  • Related Articles

    [1]HE Chao, SUN Peng, LIN Jingzhou, XU Xiaobin, CHEN Lei. Design and application of the dynamic stage separation device in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 90-95. DOI: 10.11729/syltlx20200119
    [2]Wang Xiaopeng, Zhang Chen'an, Liu Chunfeng, Wang Famin, Ye Zhengyin. Support interference and correction of cold-flow force test for air-breathing hypersonic vehicle in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 27-33. DOI: 10.11729/syltlx20180116
    [3]Ding Feng, Liu Jun, Shen Chibing, Liu Zhen, Chen Shaohua, Huang Wei. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26. DOI: 10.11729/syltlx20180080
    [4]Xu Xiaobin, Shu Haifeng, Xie Fei, Wang Xiong, Guo Leitao. Research progress on aerodynamic test technology of hypersonic wind tunnel for air-breathing aerocraft[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 29-40. DOI: 10.11729/syltlx20180053
    [5]Deng Fan, Ye Youda, Jiao Zihan, Liu Hui. Research on HIFiRE project's hypersonic vehicle integrated design of aerodynamic and scramjet propulsion[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 73-80. DOI: 10.11729/syltlx20160125
    [6]JIANG Wei, YANG Yun-jun, CHEN He-wu. Investigations on aerodynamics of the spike-tipped hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 28-32,53. DOI: 10.3969/j.issn.1672-9897.2011.06.006
    [7]HE Kai-feng, WANG Qing, QIAN Wei-qi, HE Zheng-chun. Review of aerodynamic and aero-thermodynamic parameter estimation research for hypersonic aircraft[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5): 99-104. DOI: 10.3969/j.issn.1672-9897.2011.05.020
    [8]KHARITONOV A M, ZVEGINTSEV V I, CHIRKASHENKO V F, BRODETSKY M D, MAZHUL I I, VASENEV L G, MUYLAERT J M, KORDULLA W, PAULAT J C. Aerodynamic investigation of aerospace vehicles in the new hypersonic wind tunnel AT-303 at ITAM[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 10-19. DOI: 10.3969/j.issn.1672-9897.2006.04.002
    [9]Heat flux measurement test of the hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(1): 29-32,37. DOI: 10.3969/j.issn.1672-9897.2004.01.007
    [10]The calculations of aerodynamic heating and viscous friction forces on the surface of hypersonic flight vehicle[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(1): 8-20. DOI: 10.3969/j.issn.1672-9897.2002.01.002
  • Cited by

    Periodical cited type(3)

    1. 管新蕾,孙小姣,王维,王利军. 弧形涡流发生器对湍流相干结构及强化换热的影响. 实验流体力学. 2024(04): 104-112 . 本站查看
    2. 朱寅鑫,彭文强,罗振兵,康赢,赵志杰,程盼,刘杰夫. 全叶高合成双射流对大折转角扩压叶栅的影响. 航空学报. 2023(12): 84-95 .
    3. 蔡明,高丽敏,刘哲,黎浩学,陈顺. 亚声速压气机平面叶栅及其改型的吹风试验. 实验流体力学. 2021(02): 36-42 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (360) PDF downloads (26) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close