Citation: | Tian Ye, Le Jialing, Yang Shunhua, Zhong Fuyu. Experimental study on flow structure and flame development in a hydrogen-fueled supersonic combustor[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 72-78. DOI: 10.11729/syltlx20180027 |
[1] |
Dessorness O, Scherrer D, Novelli P. Tests of JAPHAR dual mode ramjet Engine[R]. AIAA-2001-1886, 2001.
|
[2] |
Tohru M, Nobuo C, Takeshi K. Reaction and mixing-controlled combustion in scramjet engines[R]. AIAA-99-4871, 1999.
|
[3] |
王西耀, 肖保国, 田野, 等.当量比对燃烧模态的影响机理分析究[J].推进技术, 2015, 36(4):488-494.
Wang X Y, Xiao B G, Tian Y, et al. Mechanism analysis for effects of equivalence ratio on combustion mode[J]. Journal of Propulsion Technology, 2015, 36(4):488-494.
|
[4] |
王西耀, 杨顺华, 乐嘉陵.油气比对超燃发动机点火过程的影响[J].推进技术, 2012, 33(4):522-529. http://d.old.wanfangdata.com.cn/Periodical/tjjs201204005
Wang X Y, Yang S H, Le J L. Influence of fuel-air ratio on scramjet ignition[J]. Journal of Propulsion Technology, 2012, 33(4):522-29. http://d.old.wanfangdata.com.cn/Periodical/tjjs201204005
|
[5] |
王宏宇, 高峰, 李旭昌, 等.当量比对超声速燃烧室性能影响的数值研究[J].固体火箭技术, 2015, 38(4):487-491. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201504007
Wang H Y, Gao F, Li X C, et al. Numerical study on the effects of the equivalence ratio on the performance of supersonic combustor[J]. Journal of Solid Rocket Technology, 2015, 38(4):487-491. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201504007
|
[6] |
贾真, 吴迪, 朴英.当量比对带凹腔超声速燃烧室流动及燃烧特性的影响[J].航空动力学报, 2012, 27(8):1704-1711. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201208005
Jia Z, Wu D, Piao Y. Effect of equivalence ratio on flow and combustion characteristics of supersonic combustor with cavity[J]. Journal of Aerospace Power, 2012, 27(8):1704-1711. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201208005
|
[7] |
Tian Y, Xiao B G, Zhang S P, et al. Experimental and computational study on combustion performance of a kerosene fueled dual-mode scramjet combustor[J]. Aerospace Science and Technology, 2015, 46:451-458. DOI: 10.1016/j.ast.2015.09.002
|
[8] |
Tian Y, Yang S H, Le J L. Numerical study on effect of air throttling on combustion mode formation and transition in a dual-mode scramjet combustor[J]. Aerospace Science and Technology, 2016, 52:173-180. DOI: 10.1016/j.ast.2016.02.027
|
[9] |
Le J L, Yang S H, Liu W X, et al. Massively parallel simulations of Kerosene-fueled scramjet[R]. AIAA-2005-3318, 2015.
|
[10] |
Tian Y, Yang S H, Le J L, et al. Investigation of combustion and flame stabilization modes in a hydrogen fueled scramjet combustor[J]. International Journal of Hydrogen Energy, 2016, 41(42):19218-19230. DOI: 10.1016/j.ijhydene.2016.07.219
|
[11] |
田野, 杨顺华, 肖保国, 等.空气节流对煤油燃料超燃燃烧室燃烧性能影响研究[J].宇航学报, 2015, 36(12):1421-1427. DOI: 10.3873/j.issn.1000-1328.2015.12.011
Tian Y, Yang S H, Xiao B G, et al. Study on the effects of air throttling on combustion performance of a kerosene-fueled scramjet combustor[J]. Journal of Astronautics, 2015, 36(12):1421-1427. DOI: 10.3873/j.issn.1000-1328.2015.12.011
|
[12] |
Cabell K, Hass N, Storch A, et al. HIFiRE Direct-Connect Rig (HDCR) Phase Ⅰ, Scramjet test results from the NASA langley arc-heated scramjet test facility[R]. AIAA-2011-2248, 2011.
|
[13] |
Heiser W H, Pratt D T, Daley D H, et al. Hypersonic airbreathing propulsion[M]. American institute of Aeronautics & Astronautics, 1994.
|
[14] |
Micka D J. Combustion stabilization, structure, and spreading in a laboratory dual-mode scramjet combustor[D]. Ann Arbor: University of Michigan, 2010.
|
[15] |
Sun M B, Wu H Y, Fan Z Q, et al. Flame stabilization in a supersonic combustor with hydrogen injection upstream of cavity flame holders:experiments and simulations[J]. Proc IMechE, Part G:J Aerospace Engineering, 2011, 225(12):1351-1365. DOI: 10.1177/0954410011401498
|