Wang Yanzhi, Chen Fang, Liu Hong, Sha Sha, Lu Xueling, Zhang Qingbing, Yue Lianjie. Experimental investigation on response characteristics of PIV tracer particles in high speed flow[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 94-99. DOI: 10.11729/syltlx20170160
Citation: Wang Yanzhi, Chen Fang, Liu Hong, Sha Sha, Lu Xueling, Zhang Qingbing, Yue Lianjie. Experimental investigation on response characteristics of PIV tracer particles in high speed flow[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 94-99. DOI: 10.11729/syltlx20170160

Experimental investigation on response characteristics of PIV tracer particles in high speed flow

More Information
  • Received Date: December 12, 2017
  • Revised Date: March 02, 2018
  • The tracer's tracking ability is the key factor affecting the measurement accuracy of high speed PIV. Particle relaxation modeling is presented for high speed flow with the normal mach number over 1.4. Based on the combination of theoretical analysis and numerical simulations, high speed PIV and the tracer particle seeding technology are developed, and the quantificational measurement ability of PIV is improved. Recent experimental results were obtained by the Multi-Mach number high-speed wind tunnel in Shanghai JiaoTong university where titanium dioxides of various sizes were used as tracers in the Mach 4 wind tunnel to induce a 22° shock wave. The results reveal that the 30nm titanium dioxide particle is the most qualified option. Meanwhile, various shock wave experiments (including oblique shock wave and detached shock wave) were carried out to validate the particle tracing ability. In this paper, multiple experimental results are put forward to support the selection of tracer particles of high speed PIV.
  • [1]
    Scarano F, Haertig J. Application of non-isotropic resolution PIV in supersonic and hypersonic flows[J]. Journal of Mechanical Design, 2009, 100(2):208-215.
    [2]
    Haertig J, Havermann M, Rey C, et al. Particle image velocimetry in Mach 3.5 and 4.5 shock-tunnel flows[J]. AIAA Journal, 2002, 40(6):1056-1060. DOI: 10.2514/2.1787
    [3]
    徐惊雷. PIV技术在超及高超声速流场测量中的研究进展[J].力学进展, 2012, 42(1):81-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200110672

    Xu J L. The development of the PIV experimental study of the super/hypersoinc flowfield[J]. Advances in Mechanics, 2012, 42(1):81-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200110672
    [4]
    Schrijer F F J, Scarano F, Oudheusden B W V. Application of PIV in a Mach 7 double-ramp flow[J]. Experiments in Fluids, 2006, 41(2):353-363. DOI: 10.1007/s00348-006-0140-y
    [5]
    Melling A. Tracer particles and seeding for particle image velocimetry[J]. Measurement Science & Technology, 1997, 8(12):1406-1406. DOI: 10.1088-0957-0233-8-12-005/
    [6]
    赵玉新, 易仕和, 田立丰, 等.基于纳米粒子的超声速流动成像[J].中国科学, 2009, 39(12):1911-1918. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200902526593
    [7]
    陈小虎, 陈方, 刘洪, 等.高速流动PIV示踪粒子跟随性分析[J].气体物理, 2017, 2(4):36-45. http://d.old.wanfangdata.com.cn/Periodical/qtwl201704004

    Chen X H, Chen F, Liu H, et al. Tracking characteristics of PIV tracer particles in high speed flows[J]. Physics of Gases, 2017, 2(4):36-45. http://d.old.wanfangdata.com.cn/Periodical/qtwl201704004
    [8]
    易仕和, 何霖, 田立丰, 等.纳米示踪平面激光散射技术在激波复杂流场测量中的应用[J].力学进展, 2012, 42(2):197-205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200507863

    Yi S H, He L, Tian L F, et al. The application of nano-tracer planar laser scattering in shock wave field measurement[J]. Advances in Mechanics, 2012, 42(2):197-205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200507863
    [9]
    Chen F, Liu H, Rong Z. Development and application of nanoparticle tracers for PIV in supersonic and hypersonic flows[R]. AIAA-2012-0036.
    [10]
    张亚, 陈方, 刘洪, 等.高速流动中PIV示踪粒子松弛特性研究[J].实验流体力学, 2013, 27(6):70-75. DOI: 10.3969/j.issn.1672-9897.2013.06.013

    Zhang Y, Chen F, Liu H, et al. Research on the relaxation characteristics of PIV tracer particles in supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6):70-75. DOI: 10.3969/j.issn.1672-9897.2013.06.013
    [11]
    刘伟, 万国新, 陈景兵, 等.可压缩气固混合层中离散相与连续相的相互作用研究[J].计算力学学报, 2009, 26(1):8-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=SciencePaper201303040000216922

    Liu W, Wan G X, Chen J B, et al. Study on the interaction between the continuous and the dispersed phases in compressible gas-solid mixing layer[J]. Chinese Journal of Computational Mechanics, 2009, 26(1):8-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=SciencePaper201303040000216922
    [12]
    樊建人, 郑友取, 岑可法.三维气固两相混合层湍流拟序结构的直接数值模拟[J].工程热物理学报, 2001, 22(2):241-244. DOI: 10.3321/j.issn:0253-231X.2001.02.031

    Fan J R, Zheng Y Q, Cen K F. Direct numerical simulation in turbulent coherent structures of three-dimensional gas-particle two-phase mixing layer[J]. Journal of Engineering Thermophysics, 2001, 22(2):241-244. DOI: 10.3321/j.issn:0253-231X.2001.02.031
    [13]
    樊建人, 罗坤, 金晗辉, 等.直接数值模拟三维气固两相混合层中颗粒与流体的双向耦合[J].中国电机工程学报, 2003, 23(4):153-157. DOI: 10.3321/j.issn:0258-8013.2003.04.031

    Fan J R, Luo K, Jin H H, et al. Direct numerical simulation of the two-way coupling effects between particles and fluid in the three-dimensional particle-laden mixing layer[J]. Proceedings of the CSEE, 2003, 23(4):153-157. DOI: 10.3321/j.issn:0258-8013.2003.04.031
    [14]
    李召好, 李法强, 马培华, 等.超细粉末团聚机理及其消除方法[J].盐湖研究, 2005, 13(1):31-36. DOI: 10.3969/j.issn.1008-858X.2005.01.006

    Li Z H, Li F Q, Ma P H, et al. Eliminetion methods and mechanism of agglomeration of ultrafine powders[J]. Journal of Salk Lake Research, 2005, 13(1):31-36. DOI: 10.3969/j.issn.1008-858X.2005.01.006
    [15]
    Scarano F, Oudheusden B W V. Plannar velocity measurements of a two-dimensional compressible wake[J]. Experiments in Fluids, 2003, 34(3):430-441. DOI: 10.1007/s00348-002-0581-x
    [16]
    Urban W, Mungal M, Urban W, et al. Planar velocity measurements in compressible mixing layers[J]. Journal of Fluid Mechanics, 2001, 431(431):189-222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0214907656
    [17]
    Chen F, Liu H, Yang Z, et al. Tracking characteristics of tracer particles for PIV measurements in supersonic flows[J]. Chinese Journal of Aeronautics, 2017, 30(2):577-585. DOI: 10.1016/j.cja.2016.12.033
    [18]
    刘洪, 陈方, 励孝杰, 等.高速复杂流动PIV技术研究实践与挑战[J].实验流体力学, 2016, 30(1):28-42. http://www.syltlx.com/CN/abstract/abstract10899.shtml

    Liu H, Cheng F, Li X J, et al. Practices and challenges on PIV technology in high speed complex flows[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1):28-42. http://www.syltlx.com/CN/abstract/abstract10899.shtml
  • Related Articles

    [1]GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, YANG Shengke, LIN Wei. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. DOI: 10.11729/syltlx20190113
    [2]ZHU Xinxin, LONG Yongsheng, SHI Youan, YANG Qingtao, ZHOU Ping, ZHAO Shunhong. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 87-93. DOI: 10.11729/syltlx20190062
    [3]Chen Xiaohu, Chen Fang, Liu Hong, Sha Sha, Lu Xueling, Zhang Qingbing. Investigation of turbulence modification by PIV tracer particles in a supersonic mixing layer[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 8-14, 21. DOI: 10.11729/syltlx20160144
    [4]Gao Jiayi, Du Tao, Shen Yingzhe, Wu Yitian, Liang Xin, Shen Dan. Predication and wind tunnel experimental verification of thermal protection performance for low density ablative material in medium thermal environment[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 37-42. DOI: 10.11729/syltlx20160015
    [5]Shi Honghui, Chen Bo, Wang Yun. Experimental and numerical study of oblique water exit in free surface penetration by a blunt body's supercavity[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 29-35. DOI: 10.11729/syltlx20150154
    [7]RONG Zhen, CHEN Fang, LIU Hong, ZHANG Ya. Research on seeding technique of PIV in supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 64-67,85. DOI: 10.3969/j.issn.1672-9897.2012.02.014
    [8]RUAN Chi, SUN Chuan-dong, BAI Yong-lin, WANG Yi-shan, REN Ke-hui, FENG Shan. The characteristics of the tracer particles used in water flow field for PIV system[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(2): 72-77. DOI: 10.3969/j.issn.1672-9897.2006.02.015
    [9]CAI Chu-jiang, SHEN Zhi-gang, XIAO Kun, XING Yu-shan, MA Shu-lin. The preparation of tracer particles with excellent scattering performance used in PIV experiment[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(4): 65-68. DOI: 10.3969/j.issn.1672-9897.2005.04.013
    [10]Verification of the numerical investigations of convergent inlet[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(1): 13-22.

Catalog

    Article Metrics

    Article views (480) PDF downloads (59) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日