Yan Yuchao, Jiang Chengyu, Ma Binghe, Xue Xiaohan, Luo Jian. Review of the calibration methods and devices for wall shear stress[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 20-25. DOI: 10.11729/syltlx20170007
Citation: Yan Yuchao, Jiang Chengyu, Ma Binghe, Xue Xiaohan, Luo Jian. Review of the calibration methods and devices for wall shear stress[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 20-25. DOI: 10.11729/syltlx20170007

Review of the calibration methods and devices for wall shear stress

More Information
  • Received Date: December 12, 2016
  • Revised Date: February 22, 2017
  • Wall shear stress measurement with micro sensors is an effective means to study the flow friction. It is fundamental and important work to calibrate the sensors accurately. Three static and two dynamic calibration methods are introduced in this paper. The calibration devices, working principles, and behavioral models of wall shear stress measurement are analyzed. The features of calibration methods are summarized, and advice is provided for selecting the proper calibration method.
  • [1]
    Xu Y, Jiang F, Newbern S, et al. Flexible shear-stress sensor skin and its application to unmanned aerial vehicles[J]. Sensors & Actuators A:Physical, 2003, 105(3):321-329. https://www.researchgate.net/publication/222825925_Flexible_shear-stress_sensor_skin_and_its_application_to_unmanned_aerial_vehicles
    [2]
    Sells J, Chandrasekharan V, Meloy J, et al. Microfabricated silicon-on-Pyrex passive wireless wall shear stress sensor[J]. Sensors, 2011:77-80. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000006127352
    [3]
    Chandrasekharan V, Sells J, Meloy J, et al. A microscale di-fferential capacitive direct wall-shear-stress sensor[J]. Journal of Microelectromechanical Systems, 2011, 20(3):622-635. DOI: 10.1109/JMEMS.2011.2140356
    [4]
    Ma B H, Ren J Z, Deng J J, et al. Flexible thermal sensor array on PI film substrate for underwater applications[C]. Micro Electro Mechanical Systems (MEMS), IEEE 23rd International Conference, 2010:679-682.
    [5]
    Osorio O D, Silin N. Wall shear stress hot film sensor for use in gases[J]. Journal of Physics:Conference Series. IOP Publishing, 2011, 296(1):012002.
    [6]
    Xiang D, Yang Y, Xu Y, et al. MEMS-based shear-stress sensor for skin-friction measurements[C]. Instrumentation and Measurement Technology Conference (I2MTC), IEEE, 2010:656-661.
    [7]
    黄欢, 孙海浪, 田于逵, 等.水下MEMS壁面剪应力传感器标定方案仿真分析与实验验证[J].实验流体力学, 2016, 30(2):79-83. http://www.syltlx.com/CN/abstract/abstract10921.shtml

    Huang H, Sun H L, Tian Y K, et al. CFD analysis and experimental validation on the scheme of calibration for MEMS wall shear stress sensors array for underwater applications[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2):79-83. http://www.syltlx.com/CN/abstract/abstract10921.shtml
    [8]
    Zhe J, Modi V, Farmer K R. A microfabricated wall shear-stress sensor with capacitative sensing[J]. Journal of Microelectromechanical Systems, 2005, 14(1):167-175. DOI: 10.1109/JMEMS.2004.839001
    [9]
    Chandrasekaran V, Cain A, Nishida T, et al. Dynamic calibration technique for thermal shear stress sensors with variable mean flow[C]. Aerospace Sciences Meeting and Exhibit, 2000:56-65.
    [10]
    Scott M. The need for a shear stress calibration standard[C]. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland, 2004:28.
    [11]
    Sheplak M, Padmanabhan A, Schmidt M A, et al. Dynamic calibration of a shear-stress sensor using stokes-layer excitation[J]. AIAA Journal, 2001, 39(5):819-823. DOI: 10.2514/2.1415
    [12]
    Ng K Y, Shajii J, Schmidt M A. A liquid shear-stress sensor fabricated using wafer bonding technology[C]. International Conference on Solid-State Sensors and Actuators, 1991:931-934.
    [13]
    Hyman D, Pan T, Reshotko E, et al. Microfabricated shear stress sensors, part 2:testing and calibration[J]. AIAA Journal, 1999, 37(1):73-78. DOI: 10.2514/2.666
    [14]
    章梓雄, 董曾南.粘性流体力学[M].清华大学出版社, 2011.

    Zhang Z X, Dong Z N. Viscous fluid mechanics[M]. Beijing:Tsinghua University Press, 2011.
    [15]
    Ludwig P. Applied hydro-and aeromechanics[M]. Dover Publications, 1957.
    [16]
    Tani I, Hama R, Mituisi S. On the permissible roughness in the laminar boundary layer[R]. Report of the Aeronautical Research Institute Tokyo Imperial University, 1940, 15:417-428.
    [17]
    Schetz J A, Fuhs A E. Handbook of fluid dynamics and fluid machinery:fundamentals of fluid dynamics, Volume Ⅰ[J]. Journal of Fluids Engineering, 1996, 118(2):218. DOI: 10.1115/1.2817366
    [18]
    Patel M P, Reshotko E, Hyman D. Microfabricated shear-stress sensors, part 3:reducing calibration uncertainty[J]. AIAA Journal, 2002, 40(8):1582-1588. DOI: 10.2514/2.1827
    [19]
    Zucrow M J, Hoffman J D. Gas dynamics (vol1)[M]. John Wiley & Sons, 1976.
    [20]
    Arkillic E B, Breuer K S. Gaseous flow in small channels[C]. AIAA, Shear Flow Conference, Orlando, FL, 1993.
    [21]
    Padmanabhan A, Goldberg H, Breuer K D, et al. A wafer-bonded floating-element shear stress microsensor with optical position sensing by photodiodes[J]. Journal of Microelectromechanical Systems, 1997, 5(4):307-315.
    [22]
    Liang J M, Yang D G, Li J Q, et al. Calibration of a thermal MEMS shear stress sensor array[J]. Arabian Journal of Geosciences, 2015, 8(10):8089-8105. DOI: 10.1007/s12517-015-1781-z
    [23]
    Xu Y, Lin Q, Lin G, et al. Micromachined thermal shear-stress sensor for underwater applications[J]. Journal of Microelectromechanical Systems, 2005, 14(5):1023-1030. DOI: 10.1109/JMEMS.2005.856644
    [24]
    Liu C, Huang J B, Zhu Z, et al. A micromachined flow shear-stress sensor based on thermal transfer principles[J]. Journal of Microelectromechanical Systems, 1999, 8(1):90-99. DOI: 10.1109/84.749408
    [25]
    Li X Y, Li Y B, Ma B H, et al. Modelling and calibration of microthermal sensor for underwater wall shear stress measurement[J]. Micro & Nano Letters, 2014, 9(7):486-489.
    [26]
    Zuckerwar A, Scott M. A rotary flow channel for shear stress sensor calibration[C]. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2004:2303.
    [27]
    Shajii J, Ng K Y, Schmidt M A. A microfabricated floating-element shear stress sensor using wafer-bonding technology[J]. Journal of Microelectromechanical Systems, 1992, 1(2):89-94. DOI: 10.1109/84.157363
    [28]
    陈惠钊. 粘度测量[M]. 第二版. 北京: 中国计量出版社, 2002: 56-103

    Chen H Z. Viscosity measurement[M]. 2nd ed. Beijing:China Metrology Press, 2002:56-103
    [29]
    Bindzus W, Fayard G, Van Lengerich B, et al. Application of an in-line viscometer to determine the shear stress of plasticised wheat starch[J]. Starch-Stärke, 2002, 54(6):243-251. DOI: 10.1002/(ISSN)1521-379X
    [30]
    Buschmann M H, Dieterich P, Adams N A, et al. Analysis of flow in a cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells[J]. Biotechnology and Bioengineering, 2005, 89(5):493-502. DOI: 10.1002/(ISSN)1097-0290
    [31]
    Kim I C, Sang J L. Characterization of a miniature thermal shear-stress sensor with backside connections[J]. Sensors & Actuators A:Physical, 2006, 128(2):305-311. https://www.researchgate.net/publication/222200344_Characterization_of_a_miniature_thermal_shear-stress_sensor_with_backside_connections
    [32]
    Brown G L, Davey R F. The calibration of hot films for skin friction measurement[J]. Review of Scientific Instruments, 1971, 42(1):1729-1731.
    [33]
    肖文涛, 张国忠, 刘坤, 等.同轴圆筒旋转粘度计测量误差的分析与修正[J].现代科学仪器, 2012, (2):114-118. http://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ201202031.htm

    Xiao W T, Zhang G Z, Liu K, et al. Analysis and correction for measurement errors of coaxial cylinder viscometers[J]. Modern Scientific Instruments, 2012, (2):114-118. http://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ201202031.htm
    [34]
    谢尧生, 夏桂清.旋转粘度计圆筒尺寸对粘度测试的影响[J].硅酸盐通报, 1984, (1):44-51. http://www.cnki.com.cn/Article/CJFDTOTAL-GSYT198401006.htm

    Xie Y S, Xia G Q. Rotational viscometer cylinder size effect on viscosity test[J]. Bulletin of the Chinese Ceramic Society, 1984, (1):44-51. http://www.cnki.com.cn/Article/CJFDTOTAL-GSYT198401006.htm
    [35]
    Terashima O, Sawada T, Sakai Y, et al. Measurement of wall shear stress by using micro-fabricated sensor[C]//Proceedings of ISEM, Japan, Nagoya University, 2012.
  • Related Articles

    [1]LIANG Liang, TANG Puhua, LIU Yu. Numerical simulation and experimental measurement of fluid flow field in pipe with capsule robot[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 60-68. DOI: 10.11729/syltlx20200145
    [2]Wu Jinhua, Sun Haisheng, Shen Zhihong, Jiang Yubiao. 旋转流场下的振荡动导数试验技术研究[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 54-58. DOI: 10.11729/syltlx20130057
    [3]WU Wei. Study on the internal flow of marine sewage outfalls with PIV system[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(5): 25-32. DOI: 10.3969/j.issn.1672-9897.2013.05.005
    [4]GAO Li-min, WEI Nan, GAO Jie, WU Ya-nan. Image processing of PSP technique in the internal flow[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(1): 93-97. DOI: 10.3969/j.issn.1672-9897.2013.01.017
    [5]LI Qian, WANG Jian-hua, WU Xiang-yu, YANG Shi-jie. An investigation of coolant flow performance within laminated plate (Ⅰ Visualization of complex flow field using PIV technology)[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(4): 18-21. DOI: 10.3969/j.issn.1672-9897.2007.04.004
    [6]ZHANG Jun, ZHANG Zhi-rong, ZHU Jian-liang, XU Feng, LU Lin-zhang, DAI Qin. Investigation of internal flow field of ducted propeller using particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(2): 82-88. DOI: 10.3969/j.issn.1672-9897.2007.02.017
    [7]LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012
    [8]WANG Jian, HAO Peng-fei, HE Feng. PIV measurement of flow field in a trapezium-cross section micro-channel[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 94-98. DOI: 10.3969/j.issn.1672-9897.2005.03.019
    [9]Study on the field of swirler[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(4): 88-92. DOI: 10.3969/j.issn.1672-9897.2004.04.019
    [10]The application of particle image velocimetry to fluid experimentation in a turbine cascade[J]. Journal of Experiments in Fluid Mechanics, 2003, 17(4): 68-70,83. DOI: 10.3969/j.issn.1672-9897.2003.04.013
  • Cited by

    Periodical cited type(4)

    1. 吕达,张维桐,张鲁民,赵俊波,张石玉,苏浩秦. 面对称无尾高超声速飞行器三通道耦合失稳判据. 空气动力学学报. 2023(07): 74-83 .
    2. 王延灵,冯帅,卜忱,沈彦杰,陈昊,芦士光. 基于虚拟飞行的混合翼身融合布局操稳特性. 北京航空航天大学学报. 2023(09): 2337-2344 .
    3. 张子军,赵彤,孙烨,李宏信. 飞机大迎角飞行问题研究综述. 航空工程进展. 2022(03): 74-85 .
    4. 骞恒浩,石鹏飞,王敏文,王跃萍. 基于自抗扰的翼身融合客机控制器设计. 兵工自动化. 2022(10): 26-31 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (233) PDF downloads (25) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close