Zhao Huiling, Sun Jiao, Xuan Ruixiang, Chen Wenyi. Experimental study of coherent structures in a solid-liquid turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 29-36. DOI: 10.11729/syltlx20160199
Citation: Zhao Huiling, Sun Jiao, Xuan Ruixiang, Chen Wenyi. Experimental study of coherent structures in a solid-liquid turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 29-36. DOI: 10.11729/syltlx20160199

Experimental study of coherent structures in a solid-liquid turbulent boundary layer

More Information
  • Received Date: December 22, 2016
  • Revised Date: May 03, 2017
  • Solid-liquid turbulent flows are common in industrial and engineering processes.Study of the interactions between particles as well as turbulence and turbulence modulation is extremely significant, which can play an guidance role in practical engineering application for heat and/or mass transfer in chemical processes.Coherent structure in the turbulent boundary layer of particle-laden flows is experimentally investigated using Particle Image Velocimetry (PIV). Study of the change of the mean velocity profile and the turbulent intensity in the horizontal turbulent boundary layer of water and with polythene is conducted, which is used as the dispersed phase.Based on the concept of multi-scale spatial locally averaged structure function, conditional sampling and phase average methods are employed to extract and analyze the spatial topologies of the streamwise and normal fluctuating velocities, spanwise vorticity, Reynolds shear stress of the ejection and sweep events.The results show that the buffer layer of the turbulent boundary layer has thinning tendency and logarithmic layer down-shift, the turbulence intensity and the Reynolds stress are also enhanced due to the existence of particles.The amplitude of longitudinal and vertical fluctuating velocity components, as well as that of the spanwise vorticity and Reynolds shear stress can be manipulated obviously both in ejection and sweeping events, all parameters were increased. It imply that the turbulence intensity in the near-wall region in the two burst events increase, and the momentum and energy transport strengthen for the exist of particle in the experiment.
  • [1]
    岳湘安.液-固两相流基础[M].北京:石油工业出版社, 1996.
    [2]
    Smith C R, Walker J D A, Haidari A H, et al. On the dynamics of near-wall turbulence[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 1991, 336(1641):131-175. DOI: 10.1098/rsta.1991.0070
    [3]
    Gore R A, Crowe C T. Effect of particle size on modulating turbulent intensity[J]. International Journal of Multiphase Flow, 1989, 15(2):279-285. DOI: 10.1016/0301-9322(89)90076-1
    [4]
    Rashidi M, Hetsroni G, Banerjee S. Particle-turbulence interaction in a boundary layer[J]. International Journal of Multiphase Flow, 1990, 16(6):935-949. DOI: 10.1016/0301-9322(90)90099-5
    [5]
    Kaftori D, Hetsroni G, Banerjee S. The effect of particles on wall turbulence[J]. International Journal of Multiphase Flow, 1998, 24(3):359-386. DOI: 10.1016/S0301-9322(97)00054-2
    [6]
    Kulick J D, Fessler J R, Eaton J K. Particle response and turbulence modification in fully developed channel flow[J]. Journal of Fluid Mechanics, 1994, 277:109-134. DOI: 10.1017/S0022112094002703
    [7]
    Sato Y, Hishida K. Transport process of turbulence energy in particle-laden turbulent flow[J]. International Journal of Heat & Fluid Flow, 1996, 17(3):202-210. https://www.sciencedirect.com/science/article/pii/0142727X96000355
    [8]
    Li J, Wang H, Liu Z, et al. An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow[J]. Experiments in Fluids, 2012, 53(5):1385-1403. DOI: 10.1007/s00348-012-1364-7
    [9]
    Tanière A, Oesterlé B, Monnier J C. On the behaviour of solid particles in a horizontal boundary layer with turbulence and saltation effects[J]. Experiments in Fluids, 1997, 23(6):463-471. DOI: 10.1007/s003480050136
    [10]
    Kiger K T, Pan C. Suspension and turbulence modification effects of solid particulates on a horizontal turbulent channel flow[J]. Journal of Turbulence, 2002, 3(10):27-29. http://adsabs.harvard.edu/abs/2002JTurb...3...19K
    [11]
    郭福水, 王汉封, 柳朝晖, 等.水平槽道内湍流变动的PTV实验研究[J].工程热物理学报, 2004, 25(4):622-624. http://d.wanfangdata.com.cn/Periodical/gcrwlxb200404025

    Guo F S, Wang H F, Liu Z H, et al. Experimental investigations on turbulence modulation in a horizontal channel flow using PTV[J]. Journal of Engineering Thermophysics, 2004, 25(4):622-624. http://d.wanfangdata.com.cn/Periodical/gcrwlxb200404025
    [12]
    余钊圣, 王宇, 邵雪明, 等.中性悬浮大颗粒对湍槽流影响的数值研究[J].浙江大学学报(工学版), 2013, 47(1):109-115. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201211007040.htm

    Yu Z S, Wang Y, Shao X M, et al. Numerical studies on effects of neutrally buoyant large particles on turbulent channel flow[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(1):109-115. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201211007040.htm
    [13]
    Pan Y, Banerjee S. Numerical simulation of particle interactions with wall turbulence[J]. Physics of Fluids (1994-present), 1996, 8(8):2733-2755. DOI: 10.1063/1.869059
    [14]
    Pan Y, Banerjee S. Numerical investigation of the effects of large particles on wall-turbulence[J]. Physics of Fluids, 1997, 9(12):3786-3807. DOI: 10.1063/1.869514
    [15]
    Crowe C T, Gore R A, Troutt T R. Particle dispersion by coherent structures in free shear flows[J]. Particulate Science & Technology, 1985, 3(3):149-158. DOI: 10.1080/02726358508906434
    [16]
    Vinkovic I, Doppler D, Lelouvetel J, et al. Direct numerical simulation of particle interaction with ejections in turbulent channel flows[J]. International Journal of Multiphase Flow, 2011, 37(2):187-197. DOI: 10.1016/j.ijmultiphaseflow.2010.09.008
    [17]
    Pang M J, Wei J J, Yu B. Numerical investigation of phase distribution and liquid turbulence modulation in dilute particle-laden flow[J]. Particulate Science & Technology, 2011, 29(6):554-576. DOI: 10.1080/02726351.2010.536304?scroll=top
    [18]
    姜楠, 管新蕾, 于培宁.雷诺应力各向异性涡黏模型的层析TRPIV测量[J].力学学报, 2012, 44(2):1037-1042. http://www.cqvip.com/QK/91029X/201202/41251573.html

    Jiang N, Guan X L, Yu P N. Tomographic TRPIV measurement of anisotropic eddy-viscosity model for coherent structure Reynolds Stress[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2):1037-1042. http://www.cqvip.com/QK/91029X/201202/41251573.html
    [19]
    Yang S Q, Nan J. Tomographic TR-PIV measurement of coherent structure spatial topology utilizing an improved quadrant splitting method[J]. Science China Physics, Mechanics & Astronomy, 2012, 55(10):1863-1872. DOI: 10.1007/s11433-012-4887-2
    [20]
    姜楠, 于培宁, 管新蕾.湍流边界层相干结构空间拓扑形态的层析TRPIV测量[J].航空动力学报, 2012, 27(5):1113-1121. http://d.wanfangdata.com.cn/Periodical/hkdlxb201205023

    Jiang N, Yu P N, Guan X L. Tomo-TRPIV measurement of coherent structure spatial topology in turbulent boundary layer[J]. Journal of Aerospace Power, 2012, 27(5):1113-1121. http://d.wanfangdata.com.cn/Periodical/hkdlxb201205023
  • Related Articles

    [1]HE Chao, SUN Peng, LIN Jingzhou, XU Xiaobin, CHEN Lei. Design and application of the dynamic stage separation device in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 90-95. DOI: 10.11729/syltlx20200119
    [2]Wang Xiaopeng, Zhang Chen'an, Liu Chunfeng, Wang Famin, Ye Zhengyin. Support interference and correction of cold-flow force test for air-breathing hypersonic vehicle in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 27-33. DOI: 10.11729/syltlx20180116
    [3]Ding Feng, Liu Jun, Shen Chibing, Liu Zhen, Chen Shaohua, Huang Wei. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26. DOI: 10.11729/syltlx20180080
    [4]Xu Xiaobin, Shu Haifeng, Xie Fei, Wang Xiong, Guo Leitao. Research progress on aerodynamic test technology of hypersonic wind tunnel for air-breathing aerocraft[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 29-40. DOI: 10.11729/syltlx20180053
    [5]Deng Fan, Ye Youda, Jiao Zihan, Liu Hui. Research on HIFiRE project's hypersonic vehicle integrated design of aerodynamic and scramjet propulsion[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 73-80. DOI: 10.11729/syltlx20160125
    [6]JIANG Wei, YANG Yun-jun, CHEN He-wu. Investigations on aerodynamics of the spike-tipped hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 28-32,53. DOI: 10.3969/j.issn.1672-9897.2011.06.006
    [7]HE Kai-feng, WANG Qing, QIAN Wei-qi, HE Zheng-chun. Review of aerodynamic and aero-thermodynamic parameter estimation research for hypersonic aircraft[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5): 99-104. DOI: 10.3969/j.issn.1672-9897.2011.05.020
    [8]KHARITONOV A M, ZVEGINTSEV V I, CHIRKASHENKO V F, BRODETSKY M D, MAZHUL I I, VASENEV L G, MUYLAERT J M, KORDULLA W, PAULAT J C. Aerodynamic investigation of aerospace vehicles in the new hypersonic wind tunnel AT-303 at ITAM[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 10-19. DOI: 10.3969/j.issn.1672-9897.2006.04.002
    [9]Heat flux measurement test of the hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(1): 29-32,37. DOI: 10.3969/j.issn.1672-9897.2004.01.007
    [10]The calculations of aerodynamic heating and viscous friction forces on the surface of hypersonic flight vehicle[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(1): 8-20. DOI: 10.3969/j.issn.1672-9897.2002.01.002
  • Cited by

    Periodical cited type(3)

    1. 管新蕾,孙小姣,王维,王利军. 弧形涡流发生器对湍流相干结构及强化换热的影响. 实验流体力学. 2024(04): 104-112 . 本站查看
    2. 朱寅鑫,彭文强,罗振兵,康赢,赵志杰,程盼,刘杰夫. 全叶高合成双射流对大折转角扩压叶栅的影响. 航空学报. 2023(12): 84-95 .
    3. 蔡明,高丽敏,刘哲,黎浩学,陈顺. 亚声速压气机平面叶栅及其改型的吹风试验. 实验流体力学. 2021(02): 36-42 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (246) PDF downloads (24) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close