Wei Cunju, Li Yingjie, Wang Luhai, Yang Jiming. Experimental study of the effects of contact deformation on drop coalescence scenario[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 88-93. DOI: 10.11729/syltlx20160146
Citation: Wei Cunju, Li Yingjie, Wang Luhai, Yang Jiming. Experimental study of the effects of contact deformation on drop coalescence scenario[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 88-93. DOI: 10.11729/syltlx20160146

Experimental study of the effects of contact deformation on drop coalescence scenario

More Information
  • Received Date: September 22, 2016
  • Revised Date: December 26, 2016
  • The evolution of cross section of the liquid bridge during drop coalescence is captured with a new type of experimental setup which contains the generation of large drops, top-view observation and high-speed shadowgraph. The optical results support the previous findings obtained with electrical measurements in the initial stage of the coalescence. Thanks to the unique advantages of the top-view observation, the shape and position of the liquid bridge connecting the drops is clearly demonstrated in this paper. Two coalescence scenarios with different approaching speed of the drops, va, are distinguished as the center scenario and the off-center scenario based on the location of the starting point of coalescence. The critical speed, vcross, which divides the scenarios, is noticed and measured with the present device. It is found that the approaching speed has little influence on the coalescence process in the center scenario when v <vcross. On the contrary, the onset of coalescence switches to the edge of the contacting film formed by the approaching drops and the off-center scenario appears consequently when v> vcross.
  • [1]
    陈晓东, 胡国庆.微流控器件中的多相流动[J].力学进展, 2015, 45: 55-110. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500003.htm

    Chen X D, Hu G Q. Multiphase flow in microfluidic devices[J]. Advances in Mechanics, 2015, 45: 55-110. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500003.htm
    [2]
    申峰, 李易, 刘赵淼, 等.基于微流控技术的微液滴融合研究进展[J].分析化学, 2015, 43(12): 1942-1954. DOI: 10.11895/j.issn.0253-3820.100509

    Shen F, Li Y, Liu Z M, et al. Advances in micro-droplets coalescence using microfluidics[J]. Chinese Journal of Analytical Chemistry, 2015, 43(12): 1942-1954. DOI: 10.11895/j.issn.0253-3820.100509
    [3]
    Sprittles J E, Shikhmurzaev Y D. Coalescence of liquid drops: different models versus experiment[J]. Physics of Fluids, 2012, 24(12): 122105. DOI: 10.1063/1.4773067
    [4]
    Sprittles J E, Shikhmurzaev Y D. Dynamics of liquid drops coalescing in the inertial regime[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2014, 89(6): 063008. DOI: 10.1103/PhysRevE.89.063008
    [5]
    Sprittles J E, Shikhmurzaev Y D. The coalescence of liquid drops in a viscous fluid: interface formation model[J]. Journal of Fluid Mechanics, 2014, 751: 480-499. DOI: 10.1017/jfm.2014.313
    [6]
    Sprittles J E, Shikhmurzaev Y D. A parametric study of the coalescence of liquid drops in a viscous gas[J]. Journal of Fluid Mechanics, 2014, 753: 279-306. DOI: 10.1017/jfm.2014.362
    [7]
    Thoroddsen S, Etoh T, Takehara K. High-speed imaging of drops and bubbles[J]. Annu Rev Fluid Mech, 2008, 40: 257-85. DOI: 10.1146/annurev.fluid.40.111406.102215
    [8]
    Kavehpour H P. Coalescence of drops[J]. Annual Review of Fluid Mechanics, 2015, 47(1): 245-268. DOI: 10.1146/annurev-fluid-010814-014720
    [9]
    Baroudi L, Nagel S R, Morris J F, et al. Dynamics of viscous coalescing droplets in a saturated vapor phase[J]. Physics of Fluids, 2015, 27(12): 121702. DOI: 10.1063/1.4936942
    [10]
    Pothier J C, Lewis L J. Molecular-dynamics study of the viscous to inertial crossover in nanodroplet coalescence[J]. Physical Review B, 2012, 85(11): 115447. DOI: 10.1103/PhysRevB.85.115447
    [11]
    刘栋. 液滴碰撞及其融合过程的数值模拟研究[D]. 北京: 清华大学, 2013.

    Liu D. Numerical simulations on collision and coalescence of binary droplets[D]. Beijing: Tsinghua University, 2013.
    [12]
    Tang C, Zhang P, Law C K. Bouncing, coalescence, and separation in head-on collision of unequal-size droplets[J]. Physics of Fluids, 2012, 24(2): 022101. DOI: 10.1063/1.3679165
    [13]
    Paulsen J D, Burton J C, Nagel S R. Viscous to inertial crossover in liquid drop coalescence[J]. Phys Rev Lett, 2011, 106(11): 114501. DOI: 10.1103/PhysRevLett.106.114501
    [14]
    Paulsen J D, Burton J C, Nagel S R, et al. The inexorable resistance of inertia determines the initial regime of drop coalescence[J]. Proc Natl Acad Sci U S A, 2012, 109(18): 6857-6861. DOI: 10.1073/pnas.1120775109
    [15]
    Paulsen J D. Approach and coalescence of liquid drops in air[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2013, 88(6): 063010. DOI: 10.1103/PhysRevE.88.063010
    [16]
    Paulsen J D, Carmigniani R, Kannan A, et al. Coalescence of bubbles and drops in an outer fluid[J]. Nat Commun, 2014, 5: 3182. http://www.oalib.com/paper/3582125
    [17]
    Wang L, Zhang G, Wu H, et al. Note: a top-view optical approach for observing the coalescence of liquid drops[J]. Rev Sci Instrum, 2016, 87(2): 026103. DOI: 10.1063/1.4941778
    [18]
    王鲁海. 复杂管流条件下涡轮流量计响应规律及多相影响研究[D]. 合肥: 中国科学技术大学, 2016.

    Wang L H. The response characteristics of flowmeter in complex and multiphase flow conditions[D]. Hefei: University of Science and Technology of China, 2016.
    [19]
    Fezzaa K, Wang Y. Ultrafast x-ray phase-contrast imaging of the initial coalescence phase of two water droplets[J]. Phys Rev Lett, 2008, 100(10): 104501. DOI: 10.1103/PhysRevLett.100.104501
    [20]
    Zhang P, Law C K. An analysis of head-on droplet collision with large deformation in gaseous medium[J]. Physics of Fluids, 2011, 23(4): 042102. DOI: 10.1063/1.3580754
    [21]
    Case S C. Coalescence of low-viscosity fluids in air[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2009, 79(2): 026307. DOI: 10.1103/PhysRevE.79.026307
  • Related Articles

    [1]Zhou Bo, Gao Chuan, Yang Yang. Study on varying dynamic pressure control of flow field in 2m supersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 72-77. DOI: 10.11729/syltlx20180133
    [2]HUANG Ming-qi, LAN Bo, YANG Yong-dong, PENG Xian-min. Φ5m[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(5): 94-97. DOI: 10.3969/j.issn.1672-9897.2013.05.018
    [3]CHU Wei-hua, TANG Geng-sheng, WANG fan. Research and realization on the control strategies of the 2m× 2m supersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(5): 98-102. DOI: 10.3969/j.issn.1672-9897.2012.05.021
    [4]LI Ping, RUI Wei, QIN Jian-hua, TANG Liang, ZHOU Bo. Development of measurement and operation management system in 2m×2m supersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4): 96-100. DOI: 10.3969/j.issn.1672-9897.2012.04.020
    [5]ZHOU Ping, CHANG Tian-yi, WANG Fan, JIANG Tie-deng, GUO Shou-chun, SHENG Hong, YANG Xiao-song. The control system design of the high attack angle mechanism for the 8m × 6m wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3): 78-81,96. DOI: 10.3969/j.issn.1672-9897.2011.03.017
    [6]RUI Wei, YI Fan, DU Ning, QIN Jian-hua. Design and realization of TPS measurement and control system for 2.4m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(4): 72-75. DOI: 10.3969/j.issn.1672-9897.2008.04.016
    [7]LIN Qi, LIANG Bin, ZHENG Ya-qing. Control on model attitude and oscillation by wire-driven parallel manipulator support system for low-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3): 75-79. DOI: 10.3969/j.issn.1672-9897.2008.03.017
    [8]A new control system of CTS device and its application in 1.2m high speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2003, 17(1): 32-35. DOI: 10.3969/j.issn.1672-9897.2003.01.008
    [9]Rebuilding control and measurement system of CG-01 wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(3): 57-62. DOI: 10.3969/j.issn.1672-9897.2002.03.010
    [10]LI Shang-chun, LI Ling, LI Rong-yu, QI Gang. The Choke finger control system of 1.2m×1.2m trans-supersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2001, 15(1): 88-92. DOI: 10.3969/j.issn.1672-9897.2001.01.016
  • Cited by

    Periodical cited type(3)

    1. 王志英,王静竹,黄荐,王展,王一伟. 通气超空泡稳定性机理与调控研究进展. 力学进展. 2025(01): 175-217 .
    2. 刘喜燕,袁绪龙,罗凯,杜兆星. 超空泡航行体流体动力延迟特性数值模拟研究. 西北工业大学学报. 2023(05): 905-914 .
    3. 王宜菲,党建军,黄闯,许海雨,左振浩. 高弗劳德数条件下攻角对通气超空化流动影响. 西北工业大学学报. 2022(06): 1233-1241 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (192) PDF downloads (16) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close