Wei Cunju, Li Yingjie, Wang Luhai, Yang Jiming. Experimental study of the effects of contact deformation on drop coalescence scenario[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 88-93. DOI: 10.11729/syltlx20160146
Citation: Wei Cunju, Li Yingjie, Wang Luhai, Yang Jiming. Experimental study of the effects of contact deformation on drop coalescence scenario[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 88-93. DOI: 10.11729/syltlx20160146

Experimental study of the effects of contact deformation on drop coalescence scenario

More Information
  • Received Date: September 22, 2016
  • Revised Date: December 26, 2016
  • The evolution of cross section of the liquid bridge during drop coalescence is captured with a new type of experimental setup which contains the generation of large drops, top-view observation and high-speed shadowgraph. The optical results support the previous findings obtained with electrical measurements in the initial stage of the coalescence. Thanks to the unique advantages of the top-view observation, the shape and position of the liquid bridge connecting the drops is clearly demonstrated in this paper. Two coalescence scenarios with different approaching speed of the drops, va, are distinguished as the center scenario and the off-center scenario based on the location of the starting point of coalescence. The critical speed, vcross, which divides the scenarios, is noticed and measured with the present device. It is found that the approaching speed has little influence on the coalescence process in the center scenario when v <vcross. On the contrary, the onset of coalescence switches to the edge of the contacting film formed by the approaching drops and the off-center scenario appears consequently when v> vcross.
  • [1]
    陈晓东, 胡国庆.微流控器件中的多相流动[J].力学进展, 2015, 45: 55-110. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500003.htm

    Chen X D, Hu G Q. Multiphase flow in microfluidic devices[J]. Advances in Mechanics, 2015, 45: 55-110. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500003.htm
    [2]
    申峰, 李易, 刘赵淼, 等.基于微流控技术的微液滴融合研究进展[J].分析化学, 2015, 43(12): 1942-1954. DOI: 10.11895/j.issn.0253-3820.100509

    Shen F, Li Y, Liu Z M, et al. Advances in micro-droplets coalescence using microfluidics[J]. Chinese Journal of Analytical Chemistry, 2015, 43(12): 1942-1954. DOI: 10.11895/j.issn.0253-3820.100509
    [3]
    Sprittles J E, Shikhmurzaev Y D. Coalescence of liquid drops: different models versus experiment[J]. Physics of Fluids, 2012, 24(12): 122105. DOI: 10.1063/1.4773067
    [4]
    Sprittles J E, Shikhmurzaev Y D. Dynamics of liquid drops coalescing in the inertial regime[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2014, 89(6): 063008. DOI: 10.1103/PhysRevE.89.063008
    [5]
    Sprittles J E, Shikhmurzaev Y D. The coalescence of liquid drops in a viscous fluid: interface formation model[J]. Journal of Fluid Mechanics, 2014, 751: 480-499. DOI: 10.1017/jfm.2014.313
    [6]
    Sprittles J E, Shikhmurzaev Y D. A parametric study of the coalescence of liquid drops in a viscous gas[J]. Journal of Fluid Mechanics, 2014, 753: 279-306. DOI: 10.1017/jfm.2014.362
    [7]
    Thoroddsen S, Etoh T, Takehara K. High-speed imaging of drops and bubbles[J]. Annu Rev Fluid Mech, 2008, 40: 257-85. DOI: 10.1146/annurev.fluid.40.111406.102215
    [8]
    Kavehpour H P. Coalescence of drops[J]. Annual Review of Fluid Mechanics, 2015, 47(1): 245-268. DOI: 10.1146/annurev-fluid-010814-014720
    [9]
    Baroudi L, Nagel S R, Morris J F, et al. Dynamics of viscous coalescing droplets in a saturated vapor phase[J]. Physics of Fluids, 2015, 27(12): 121702. DOI: 10.1063/1.4936942
    [10]
    Pothier J C, Lewis L J. Molecular-dynamics study of the viscous to inertial crossover in nanodroplet coalescence[J]. Physical Review B, 2012, 85(11): 115447. DOI: 10.1103/PhysRevB.85.115447
    [11]
    刘栋. 液滴碰撞及其融合过程的数值模拟研究[D]. 北京: 清华大学, 2013.

    Liu D. Numerical simulations on collision and coalescence of binary droplets[D]. Beijing: Tsinghua University, 2013.
    [12]
    Tang C, Zhang P, Law C K. Bouncing, coalescence, and separation in head-on collision of unequal-size droplets[J]. Physics of Fluids, 2012, 24(2): 022101. DOI: 10.1063/1.3679165
    [13]
    Paulsen J D, Burton J C, Nagel S R. Viscous to inertial crossover in liquid drop coalescence[J]. Phys Rev Lett, 2011, 106(11): 114501. DOI: 10.1103/PhysRevLett.106.114501
    [14]
    Paulsen J D, Burton J C, Nagel S R, et al. The inexorable resistance of inertia determines the initial regime of drop coalescence[J]. Proc Natl Acad Sci U S A, 2012, 109(18): 6857-6861. DOI: 10.1073/pnas.1120775109
    [15]
    Paulsen J D. Approach and coalescence of liquid drops in air[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2013, 88(6): 063010. DOI: 10.1103/PhysRevE.88.063010
    [16]
    Paulsen J D, Carmigniani R, Kannan A, et al. Coalescence of bubbles and drops in an outer fluid[J]. Nat Commun, 2014, 5: 3182. http://www.oalib.com/paper/3582125
    [17]
    Wang L, Zhang G, Wu H, et al. Note: a top-view optical approach for observing the coalescence of liquid drops[J]. Rev Sci Instrum, 2016, 87(2): 026103. DOI: 10.1063/1.4941778
    [18]
    王鲁海. 复杂管流条件下涡轮流量计响应规律及多相影响研究[D]. 合肥: 中国科学技术大学, 2016.

    Wang L H. The response characteristics of flowmeter in complex and multiphase flow conditions[D]. Hefei: University of Science and Technology of China, 2016.
    [19]
    Fezzaa K, Wang Y. Ultrafast x-ray phase-contrast imaging of the initial coalescence phase of two water droplets[J]. Phys Rev Lett, 2008, 100(10): 104501. DOI: 10.1103/PhysRevLett.100.104501
    [20]
    Zhang P, Law C K. An analysis of head-on droplet collision with large deformation in gaseous medium[J]. Physics of Fluids, 2011, 23(4): 042102. DOI: 10.1063/1.3580754
    [21]
    Case S C. Coalescence of low-viscosity fluids in air[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2009, 79(2): 026307. DOI: 10.1103/PhysRevE.79.026307
  • Related Articles

    [1]LIU Qiang, LI Qiang, WEI Chunhua, YIN Xiwei, JIANG Hailin, LIANG Lei. The dynamic calibration method of PSP and its characteristics research considering the influence of temperature[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230161
    [2]CAI Yanqing, YANG Xiaoli, WANG Kaixing, LIU Fuqiang, LENG Xianyin, WANG Shaolin, LIU Cunxi, MU Yong, XU Gang. Experimental study on the effect of two-stage radial spacing on flow field and atomization in LDI staged combustor[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 15-24. DOI: 10.11729/syltlx20220082
    [3]WANG Lei, LI Zhe, FENG Lihao. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 87-95. DOI: 10.11729/syltlx20230039
    [4]ZHAO Rongjuan, LIU Shiran, ZHOU Zheng, WU Liyin, LYU Zhiguo. Research of scramjet thrust test in shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 103-108. DOI: 10.11729/syltlx20210025
    [5]CHEN Lin, FENG Jing. Thermophysical properties research progress of ferroelastic RETaO4 ceramics[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 56-76. DOI: 10.11729/syltlx20220020
    [6]LIU Yu, XIAO Baoguo, WANG Lan, CHEN Weiqiang. Standing stability enhancement method of oblique detonation waves in a confined space and its experimental validation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 109-116. DOI: 10.11729/syltlx20200084
    [7]ZHAO Rongjuan, HUANG Jun, LIU Shiran, LYU Zhiguo, LI Guozhi. Application of ANSYS in piezoelectric balance design[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 96-102. DOI: 10.11729/syltlx20190005
    [8]Zhang Shiyu, Fu Zengliang, Zhao Junbo, Gao Qing, Qian Er. Development of near-space-vehicle anemometer and calibration tests in low-temperature-low-static-pressure wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 81-85, 103. DOI: 10.11729/syltlx20160137
    [9]Miao Bo, Zhu Chunling, Zhu Chengxiang, Zhang Huijun, Fu Bin. Vibration de-icing method with piezoelectric actuators on airfoil surface[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 46-53. DOI: 10.11729/syltlx20160010
    [10]LIU Chu-ping, MENG Song-he, DU Bai-he, WANG Guo-lin. Preliminary tests of non-ablative thermal protection materials[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3): 50-53,69. DOI: 10.3969/j.issn.1672-9897.2009.03.011
  • Cited by

    Periodical cited type(4)

    1. 苏鑫,管润程,王桥,苑伟政,吕湘连,何洋. 基于深度学习的结冰区域和厚度检测方法. 航空学报. 2023(S2): 205-213 .
    2. 郝云权,赵大志,李伟斌,赵炜,陈江涛. 飞机结冰的不确定性量化研究进展. 航空动力学报. 2022(09): 1855-1871 .
    3. 王良禹,徐浩军,张喆,裴彬彬,薛源. 结冰对飞机横航向飞行品质的影响. 飞行力学. 2018(01): 16-19 .
    4. 易贤,李维浩,王应宇,马洪林. 飞机结冰传感器安装位置确定方法. 实验流体力学. 2018(02): 48-54 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (193) PDF downloads (16) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close