Citation: | Wang Haoli, Xu Ming. Velocity measurements for flows around micro-cylinder array based on image overlapping[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 59-65. DOI: 10.11729/syltlx20160047 |
[1] |
Yoshida H. The wide variety of possible applications of micro-thermofluid control[J]. Microfluid Nanofluid, 2005, 1:289-300. DOI: 10.1007/s10404-004-0014-7
|
[2] |
Yeom J, Agonafer D D, Han J H, et al. Low Reynolds number flow across an array of cylindrical microposts in a microchannel and figure-of-merit analysis of micropost-filled microreactors[J]. J Micromech Microeng, 2009, 19:065025. DOI: 10.1088/0960-1317/19/6/065025
|
[3] |
Tamayol A, Khosla A, Gray, et al. Bahrami creeping flow through ordered arrays of micro-cylinders embedded in a rectangular minichannel[J]. Int J Heat Mass Transfer, 2012, 55(15-16):3900-3908. DOI: 10.1016/j.ijheatmasstransfer.2012.03.008
|
[4] |
Wang D M, Tarbell J M. Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells[J]. J Biomech Eng, 1995, 117:358-363. DOI: 10.1115/1.2794192
|
[5] |
Tada S, Tarbell J M. Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells[J]. Amercian Journal of Physiology-Heart and Circulatory, 2000, 278:1589-1597. https://www.researchgate.net/publication/12541875_Interstitial_flow_through_the_internal_elastic_lamina_affects_shear_stress_on_arterial_smooth_muscle_cells
|
[6] |
Nagrath S, Sequist L V, Maheswaran S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology[J]. Nature, 2007, 450:1235-1239. DOI: 10.1038/nature06385
|
[7] |
Santiago J G, Wereley S T, Meinhart C D. A particle image velocimetry system for microfluidics[J]. Exp Fluids, 1998, 25(4):316-319. DOI: 10.1007/s003480050235
|
[8] |
Wereley S T, Meinhart C D. Recent advances in micro-particle image velocimetry[J]. Annu Rev Fluid Mech, 2010, 42:557-576. DOI: 10.1146/annurev-fluid-121108-145427
|
[9] |
Wereley S T, Meinhart C D, Gray M H B. Depth effects in volume illuminated particle image velocimetry[C]. The Third International Workshop on Particle Image Velocimetry, Santa Barbara, 1999:545-550.
|
[10] |
Olsen M G, Adrian R J. Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry[J]. Exp Fluids, 2000, 29:S166-S174. DOI: 10.1007/s003480070018
|
[11] |
Chuong V, Nguyen A F, Josie C. Improvement of measurement accuracy in micro PIV by image overlapping[J]. Exp Fluids, 2010, 49:701-712. DOI: 10.1007/s00348-010-0837-9
|
[12] |
Wereley S T, Gui L, Meinhart C D. Advanced algorithms for microscale particle image velocimetry[J]. AIAA J, 2002, 40:1047-1055. DOI: 10.2514/2.1786
|
[13] |
Massimiliano R, Rodrigo S, Christian C, et al. On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV[J]. Exp Fluids, 2012, 52:1063-1075. DOI: 10.1007/s00348-011-1194-z
|
[14] |
王昊利, 王元. Micro-PIV--粒子图像测速技术的新进展[J].力学进展, 2005, 35(1):77-90. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200501008.htm
Wang H L, Wang Y. Micro-PIV--the new trend of Particle Image Velocimetry[J]. Advance in Mechanics, 2005, 35(1):77-90. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200501008.htm
|
[15] |
Nam-Trung N, Steven T, Wereley S T. Fundamentals and applications of microfluidics[M]. Artech House, Inc, 2002.
|
[16] |
徐明, 王昊利.基于低密度粒子图像叠加的Micro-PIV速度场测量[J].实验流体力学, 2013, 27(2):106-112. http://www.syltlx.com/CN/abstract/abstract10342.shtml
Xu M, Wang H L. The micro-PIV measurement based on the low particle density[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2):106-112. http://www.syltlx.com/CN/abstract/abstract10342.shtml
|
[17] |
Bitsch L, Olesen L, Westergaard C, et al. Micro particle-image velocimetry of bead suspensions and blood flows[J]. Exp Fluids, 2005, 39:507-513. DOI: 10.1007/s00348-005-0967-7
|
1. |
王娟,李军,邹槊,何星晨,万加亿,周宇. 压滤式水电解槽微通道内球凸-球凹结构绕流特性的模拟. 过程工程学报. 2020(03): 294-301 .
![]() | |
2. |
张润林,潘振海,吴慧英. 微通道内单颗粒周围微观流场的直接定量观测. 工程热物理学报. 2018(04): 811-816 .
![]() |