Citation: | Wang Haoli, Xu Ming. Velocity measurements for flows around micro-cylinder array based on image overlapping[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 59-65. DOI: 10.11729/syltlx20160047 |
[1] |
Yoshida H. The wide variety of possible applications of micro-thermofluid control[J]. Microfluid Nanofluid, 2005, 1:289-300. DOI: 10.1007/s10404-004-0014-7
|
[2] |
Yeom J, Agonafer D D, Han J H, et al. Low Reynolds number flow across an array of cylindrical microposts in a microchannel and figure-of-merit analysis of micropost-filled microreactors[J]. J Micromech Microeng, 2009, 19:065025. DOI: 10.1088/0960-1317/19/6/065025
|
[3] |
Tamayol A, Khosla A, Gray, et al. Bahrami creeping flow through ordered arrays of micro-cylinders embedded in a rectangular minichannel[J]. Int J Heat Mass Transfer, 2012, 55(15-16):3900-3908. DOI: 10.1016/j.ijheatmasstransfer.2012.03.008
|
[4] |
Wang D M, Tarbell J M. Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells[J]. J Biomech Eng, 1995, 117:358-363. DOI: 10.1115/1.2794192
|
[5] |
Tada S, Tarbell J M. Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells[J]. Amercian Journal of Physiology-Heart and Circulatory, 2000, 278:1589-1597. https://www.researchgate.net/publication/12541875_Interstitial_flow_through_the_internal_elastic_lamina_affects_shear_stress_on_arterial_smooth_muscle_cells
|
[6] |
Nagrath S, Sequist L V, Maheswaran S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology[J]. Nature, 2007, 450:1235-1239. DOI: 10.1038/nature06385
|
[7] |
Santiago J G, Wereley S T, Meinhart C D. A particle image velocimetry system for microfluidics[J]. Exp Fluids, 1998, 25(4):316-319. DOI: 10.1007/s003480050235
|
[8] |
Wereley S T, Meinhart C D. Recent advances in micro-particle image velocimetry[J]. Annu Rev Fluid Mech, 2010, 42:557-576. DOI: 10.1146/annurev-fluid-121108-145427
|
[9] |
Wereley S T, Meinhart C D, Gray M H B. Depth effects in volume illuminated particle image velocimetry[C]. The Third International Workshop on Particle Image Velocimetry, Santa Barbara, 1999:545-550.
|
[10] |
Olsen M G, Adrian R J. Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry[J]. Exp Fluids, 2000, 29:S166-S174. DOI: 10.1007/s003480070018
|
[11] |
Chuong V, Nguyen A F, Josie C. Improvement of measurement accuracy in micro PIV by image overlapping[J]. Exp Fluids, 2010, 49:701-712. DOI: 10.1007/s00348-010-0837-9
|
[12] |
Wereley S T, Gui L, Meinhart C D. Advanced algorithms for microscale particle image velocimetry[J]. AIAA J, 2002, 40:1047-1055. DOI: 10.2514/2.1786
|
[13] |
Massimiliano R, Rodrigo S, Christian C, et al. On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV[J]. Exp Fluids, 2012, 52:1063-1075. DOI: 10.1007/s00348-011-1194-z
|
[14] |
王昊利, 王元. Micro-PIV--粒子图像测速技术的新进展[J].力学进展, 2005, 35(1):77-90. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200501008.htm
Wang H L, Wang Y. Micro-PIV--the new trend of Particle Image Velocimetry[J]. Advance in Mechanics, 2005, 35(1):77-90. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200501008.htm
|
[15] |
Nam-Trung N, Steven T, Wereley S T. Fundamentals and applications of microfluidics[M]. Artech House, Inc, 2002.
|
[16] |
徐明, 王昊利.基于低密度粒子图像叠加的Micro-PIV速度场测量[J].实验流体力学, 2013, 27(2):106-112. http://www.syltlx.com/CN/abstract/abstract10342.shtml
Xu M, Wang H L. The micro-PIV measurement based on the low particle density[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2):106-112. http://www.syltlx.com/CN/abstract/abstract10342.shtml
|
[17] |
Bitsch L, Olesen L, Westergaard C, et al. Micro particle-image velocimetry of bead suspensions and blood flows[J]. Exp Fluids, 2005, 39:507-513. DOI: 10.1007/s00348-005-0967-7
|
[1] | LIU Qiang, LI Qiang, WEI Chunhua, YIN Xiwei, JIANG Hailin, LIANG Lei. The dynamic calibration method of PSP and its characteristics research considering the influence of temperature[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230161 |
[2] | CAI Yanqing, YANG Xiaoli, WANG Kaixing, LIU Fuqiang, LENG Xianyin, WANG Shaolin, LIU Cunxi, MU Yong, XU Gang. Experimental study on the effect of two-stage radial spacing on flow field and atomization in LDI staged combustor[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 15-24. DOI: 10.11729/syltlx20220082 |
[3] | WANG Lei, LI Zhe, FENG Lihao. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 87-95. DOI: 10.11729/syltlx20230039 |
[4] | ZHAO Rongjuan, LIU Shiran, ZHOU Zheng, WU Liyin, LYU Zhiguo. Research of scramjet thrust test in shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 103-108. DOI: 10.11729/syltlx20210025 |
[5] | CHEN Lin, FENG Jing. Thermophysical properties research progress of ferroelastic RETaO4 ceramics[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 56-76. DOI: 10.11729/syltlx20220020 |
[6] | LIU Yu, XIAO Baoguo, WANG Lan, CHEN Weiqiang. Standing stability enhancement method of oblique detonation waves in a confined space and its experimental validation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 109-116. DOI: 10.11729/syltlx20200084 |
[7] | ZHAO Rongjuan, HUANG Jun, LIU Shiran, LYU Zhiguo, LI Guozhi. Application of ANSYS in piezoelectric balance design[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 96-102. DOI: 10.11729/syltlx20190005 |
[8] | Zhang Shiyu, Fu Zengliang, Zhao Junbo, Gao Qing, Qian Er. Development of near-space-vehicle anemometer and calibration tests in low-temperature-low-static-pressure wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 81-85, 103. DOI: 10.11729/syltlx20160137 |
[9] | Miao Bo, Zhu Chunling, Zhu Chengxiang, Zhang Huijun, Fu Bin. Vibration de-icing method with piezoelectric actuators on airfoil surface[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 46-53. DOI: 10.11729/syltlx20160010 |
[10] | LIU Chu-ping, MENG Song-he, DU Bai-he, WANG Guo-lin. Preliminary tests of non-ablative thermal protection materials[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3): 50-53,69. DOI: 10.3969/j.issn.1672-9897.2009.03.011 |
1. |
苏鑫,管润程,王桥,苑伟政,吕湘连,何洋. 基于深度学习的结冰区域和厚度检测方法. 航空学报. 2023(S2): 205-213 .
![]() | |
2. |
郝云权,赵大志,李伟斌,赵炜,陈江涛. 飞机结冰的不确定性量化研究进展. 航空动力学报. 2022(09): 1855-1871 .
![]() | |
3. |
王良禹,徐浩军,张喆,裴彬彬,薛源. 结冰对飞机横航向飞行品质的影响. 飞行力学. 2018(01): 16-19 .
![]() | |
4. |
易贤,李维浩,王应宇,马洪林. 飞机结冰传感器安装位置确定方法. 实验流体力学. 2018(02): 48-54 .
![]() |