Citation: | XIONG Y. Recent advances in background oriented Schlieren and its applications[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):30-48.. DOI: 10.11729/syltlx20210173 |
[1] |
SETTLES G S,COVERT E E. Schlieren and shadowgraph techniques: visualizing phenomena in transport media[J]. Applied Mechanics Reviews,2002,55(4):B76-B77. doi: 10.1115/1.1483362
|
[2] |
李桂春. 气动光学[M]. 北京: 国防工业出版社, 2006.
LI G C. Aero-optics[M]. Beijing: National Defense Industry Press, 2006.
|
[3] |
DALZIEL S B,HUGHES G O,SUTHERLAND B R. Whole-field density measurements by :“synthetic schlieren”[J]. Experiments in Fluids,2000,28(4):322-335. doi: 10.1007/s003480050391
|
[4] |
RICHARD H,RAFFEL M. Principle and applications of the background oriented schlieren (BOS) method[J]. Measurement Science and Technology,2001,12(9):1576-1585. doi: 10.1088/0957-0233/12/9/325
|
[5] |
MEIER G. Computerized background-oriented Schlieren[J]. Experiments in Fluids,2002,33(1):181-187. doi: 10.1007/s00348-002-0450-7
|
[6] |
XIONG Y,WEILENMANN M,NOIRAY N. Analysis and reduction of spurious displacements in high-framing-rate background-oriented Schlieren[J]. Experiments in Fluids,2020,61(2):1-12. doi: 10.1007/s00348-020-2879-y
|
[7] |
ELSINGA G E,OUDHEUSDEN B W,SCARANO F,et al. Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren[J]. Experiments in Fluids,2004,36(2):309-325. doi: 10.1007/s00348-003-0724-8
|
[8] |
KAGANOVICH D,JOHNSON L A,MAMONAU A A,et al. Benchmarking background oriented schlieren against interferometric measurement using open source tools[J]. Applied Optics,2020,59(30):9553. doi: 10.1364/ao.406301
|
[9] |
FISHER T B,QUINN M K,SMITH K L. An experimental sensitivity comparison of the schlieren and background-oriented schlieren techniques applied to hypersonic flow[J]. Measurement Science and Technology,2019,30(6):065202. doi: 10.1088/1361-6501/ab1582
|
[10] |
HARGATHER M J,SETTLES G S. A comparison of three quantitative schlieren techniques[J]. Optics and Lasers in Engineering,2012,50(1):8-17. doi: 10.1016/j.optlaseng.2011.05.012
|
[11] |
RAFFEL M. Background-oriented schlieren (BOS) tech-niques[J]. Experiments in Fluids,2015,56(3):1-17. doi: 10.1007/s00348-015-1927-5
|
[12] |
SETTLES G S,HARGATHER M J. A review of recent developments in schlieren and shadowgraph techniques[J]. Measurement Science and Technology,2017,28(4):042001. doi: 10.1088/1361-6501/aa5748
|
[13] |
CAI S Z,WANG Z C,FUEST F,et al. Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks[J]. Journal of Fluid Mechanics,2021,915:A102. doi: 10.1017/jfm.2021.135
|
[14] |
GOJANI A B,KAMISHI B,OBAYASHI S. Measurement sensitivity and resolution for background oriented schlieren during image recording[J]. Journal of Visualization,2013,16(3):201-207. doi: 10.1007/s12650-013-0170-5
|
[15] |
GOLDHAHN E,SEUME J. The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field[J]. Experiments in Fluids,2007,43(2-3):241-249. doi: 10.1007/s00348-007-0331-1
|
[16] |
LANG H M,OBERLEITHNER K,PASCHEREIT C O,et al. Measurement of the fluctuating temperature field in a heated swirling jet with BOS tomography[J]. Experiments in Fluids,2017,58(7):1-21. doi: 10.1007/s00348-017-2367-1
|
[17] |
XIONG Y,KAUFMANN T,NOIRAY N. Towards robust BOS measurements for axisymmetric flows[J]. Experi-ments in Fluids,2020,61(8):1-12. doi: 10.1007/s00348-020-03007-4
|
[18] |
RAJENDRAN L K,BANE S P M,VLACHOS P P. PIV/BOS synthetic image generation in variable density environments for error analysis and experiment design[J]. Measurement Science and Technology,2019,30(8):085302. doi: 10.1088/1361-6501/ab1ca8
|
[19] |
AMJAD S,KARAMI S,SORIA J,et al. Assessment of three-dimensional density measurements from tomographic background-oriented schlieren (BOS)[J]. Measurement Science and Technology,2020,31(11):114002. doi: 10.1088/1361-6501/ab955a
|
[20] |
OTA M,LEOPOLD F,NODA R,et al. Improvement in spatial resolution of background-oriented schlieren tech-nique by introducing a telecentric optical system and its application to supersonic flow[J]. Experiments in Fluids,2015,56(3):1-10. doi: 10.1007/s00348-015-1919-5
|
[21] |
COZZI F,GÖTTLICH E,ANGELUCCI L,et al. Development of a background-oriented schlieren technique with telecentric lenses for supersonic flow[J]. Journal of Physics: Conference Series,2017,778:012006. doi: 10.1088/1742-6596/778/1/012006
|
[22] |
COZZI F,GÖTTLICH E. Enhanced background oriented schlieren (EBOS)[J]. Journal of Physics: Conference Series,2019,1249(1):012017. doi: 10.1088/1742-6596/1249/1/012017
|
[23] |
MEIER A H,ROESGEN T. Improved background oriented schlieren imaging using laser speckle illumination[J]. Experiments in Fluids,2013,54(6):1-6. doi: 10.1007/s00348-013-1549-8
|
[24] |
GOODMAN J W. Speckle phenomena in optics: theory and applications[M]. Englewood: Roberts&Company, 2006. doi: 10.1117/3.2548484
|
[25] |
MICHALSKI Q,BENITO PAREJO C J,CLAVERIE A,et al. An application of speckle-based background oriented schlieren for optical calorimetry[J]. Experimental Thermal and Fluid Science,2018,91:470-478. doi: 10.1016/j.expthermflusci.2017.09.012
|
[26] |
NAKAMURA Y,SUZUKI T,KINEFUCHI K,et al. Speckle beam-oriented schlieren technique[J]. Experiments in Fluids,2021,62(1):1-11. doi: 10.1007/s00348-020-03113-3
|
[27] |
RAFFEL M, WILLERT C E, SCARANO F, et al. Particle Image Velocimetry[M]. Cham: Springer International Publi-shing, 2018. doi: 10.1007/978-3-319-68852-7
|
[28] |
RAFFEL M,RICHARD H,MEIER G. On the applicability of background oriented optical tomography for large scale aerodynamic investigations[J]. Experiments in Fluids,2000,28(5):477-481. doi: 10.1007/s003480050408
|
[29] |
SCARANO F. Iterative image deformation methods in PIV[J]. Measurement Science and Technology,2002,13(1):R1-R19. doi: 10.1088/0957-0233/13/1/201
|
[30] |
ROESGEN T. Optimal subpixel interpolation in particle image velocimetry[J]. Experiments in Fluids,2003,35(3):252-256. doi: 10.1007/s00348-003-0627-8
|
[31] |
WESTERWEEL J. Fundamentals of digital particle image velocimetry[J]. Measurement Science and Technology,1997,8(12):1379-1392. doi: 10.1088/0957-0233/8/12/002
|
[32] |
SOURGEN F,LEOPOLD F,KLATT D. Reconstruction of the density field using the Colored Background Oriented Schlieren Technique (CBOS)[J]. Optics and Lasers in Engineering,2012,50(1):29-38. doi: 10.1016/j.optlaseng.2011.07.012
|
[33] |
LEOPOLD F,OTA M,KLATT D,et al. Reconstruction of the unsteady supersonic flow around a spike using the colored background oriented schlieren technique[J]. Journal of Flow Control, Measurement & Visualization,2013,1(2):69-76. doi: 10.4236/jfcmv.2013.12009
|
[34] |
LEOPOLD F, KLATT D, OTA M, et al. Reconstruction of density fields of supersonic flows using an improved Schlieren technique[C]//Proc of the Electro-Optical Remote Sensing XIII . 2019. doi: 10.1117/12.2533463
|
[35] |
GARDNER A D,RAFFEL M,SCHWARZ C,et al. Reference-free digital shadowgraphy using a moving BOS background[J]. Experiments in Fluids,2020,61(2):1-5. doi: 10.1007/s00348-019-2865-4
|
[36] |
WERNET M P. Real-time background oriented schlieren with self-illuminated speckle background[J]. Measurement Science and Technology,2020,31(1):017001. doi: 10.1088/1361-6501/ab4211
|
[37] |
REICHENZER F,SCHNEIDER M,HERKOMMER A. Improvement in systematic error in background-oriented schlieren results by using dynamic backgrounds[J]. Experiments in Fluids,2021,62(9):1-18. doi: 10.1007/s00348-021-03285-6
|
[38] |
ATCHESON B,HEIDRICH W,IHRKE I. An evaluation of optical flow algorithms for background oriented schlieren imaging[J]. Experiments in Fluids,2009,46(3):467-476. doi: 10.1007/s00348-008-0572-7
|
[39] |
LUCAS B D, KANADE T. Iterative image registration technique with an application to stereo vision[C]//Proc of Proceedings of the International Joint Conference on Artifical Intelligence. 1981. doi: 10.5555/1623264.1623280
|
[40] |
HORN B K P,SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence,1981,17(1-3):185-203. doi: 10.1016/0004-3702(81)90024-2
|
[41] |
BROX T, BRUHN A, PAPENBERG N, et al. High accuracy optical flow estimation based on a theory for warping[C]//Proc of Computer Vision – ECCV. 2004. doi: 10.1007/978-3-540-24673-2_3
|
[42] |
LETELIER J A,HERRERA P,MUJICA N,et al. Enhancement of synthetic schlieren image resolution using total variation optical flow: application to thermal experiments in a Hele-Shaw cell[J]. Experiments in Fluids,2016,57(2):1-14. doi: 10.1007/s00348-015-2109-1
|
[43] |
SCHMIDT B E,WOIKE M R. Wavelet-based optical flow analysis for background-oriented schlieren image proce-ssing[J]. AIAA Journal,2021:1-8. doi: 10.2514/1.j060218
|
[44] |
ZHANG X Y,WANG L M,LIU B,et al. Hybrid adaptive wavelet-based optical flow algorithm for background oriented schlieren (BOS) experiments[J]. Mathematical Pr lems in Engineering ,2020,2020:5138153. doi: 10.1155/2020/5138153
|
[45] |
RAJENDRAN L K,BANE S P M,VLACHOS P P. Correction to: dot tracking methodology for background-oriented schlieren (BOS)[J]. Experiments in Fluids,2020,61(8):1. doi: 10.1007/s00348-020-03029-y
|
[46] |
CHARRUAULT F, GREIDANUS A, WESTERWEEL J. A Dot Tracking Algorithm To Measure Free Surface Deformations[C]. Proc of 18th International Symposium on Flow Visualization. 2018.
|
[47] |
RAJENDRAN L,ZHANG J C,BANE S,et al. Uncertainty-based weighted least squares density integration for background-oriented schlieren[J]. Experi-ments in Fluids,2020,61(11):1-12. doi: 10.1007/s00348-020-03071-w
|
[48] |
BARINOV Y A. A new method of processing background oriented schlieren images[J]. Technical Physics Letters,2019,45(6):632-634. doi: 10.1134/s106378501906021x
|
[49] |
WILDEMAN S. Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop[J]. Experiments in Fluids,2018,59(6):1-13. doi: 10.1007/s00348-018-2553-9
|
[50] |
ZOU N, SONG Y. Research of background-oriented schlieren based on two-dimensional de Bruijn sequence color coding technology[C]//Proc of the AOPC 2019: Optical Sensing and Imaging Technology. 2019: 107. doi: 10.1117/12.2547580
|
[51] |
OTA M,HAMADA K,KATO H,et al. Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented schlieren (CGBOS) technique[J]. Measurement Science and Technology,2011,22(10):104011. doi: 10.1088/0957-0233/22/10/104011
|
[52] |
OTA M, LEOPOLD F, JAGUSINSKI F, et al. Comparison between CBOS (colored background oriented Schlieren) and CGBOS (colored-grid background oriented Schlieren) for supersonic[C]//Proc of 15th International Symposium on Flow Visualization. 2012.
|
[53] |
RAMAIAH J,AJITHAPRASAD S,GANNAVARPU R,et al. Fast and robust method for flow analysis using GPU assisted diffractive optical element based background oriented schlieren (BOS)[J]. Optics and Lasers in Engineering,2020,126:105908. doi: 10.1016/j.optlaseng.2019.105908
|
[54] |
ZHU Y W, SONG Y, QU X J, et al. Quantitative measurement of colored-fringe background oriented schliecxren based on three-step phase shifting[C]//Proc of the Optical Metrology and Inspection for Industrial Applications V. 2018: 63. doi: 10.1117/12.2500908
|
[55] |
TOKGOZ S,GEISLER R,VAN BOKHOVEN L J A,et al. Temperature and velocity measurements in a fluid layer using background-oriented schlieren and PIV methods[J]. Measurement Science and Technology,2012,23(11):115302. doi: 10.1088/0957-0233/23/11/115302
|
[56] |
VENKATAKRISHNAN L,MEIER G. Density measure-ments using the Background Oriented Schlieren technique[J]. Experiments in Fluids,2004,37(2):237-247. doi: 10.1007/s00348-004-0807-1
|
[57] |
WEILENMANN M,XIONG Y,NOIRAY N. On the dispersion of entropy waves in turbulent flows[J]. Journal of Fluid Mechanics,2020,903:R1. doi: 10.1017/jfm.2020.703
|
[58] |
VAN HINSBERG N P,RÖSGEN T. Density measure-ments using near-field background-oriented Schlieren[J]. Experiments in Fluids,2014,55(4):1-11. doi: 10.1007/s00348-014-1720-x
|
[59] |
DING H L,YI S H,ZHAO X H. Experimental investigation of aero-optics induced by supersonic film based on near-field background-oriented schlieren[J]. Applied Optics,2019,58(11):2948. doi: 10.1364/ao.58.002948
|
[60] |
HASHIMOTO Y,FUJII K,KAMEDA M. Modified application of algebraic reconstruction technique to near-field background-oriented schlieren images for three-dimensional flows[J]. Transactions of the Japan Society for Aeronautical and Space Sciences,2017,60(2):85-92. doi: 10.2322/tjsass.60.85
|
[61] |
GUO G M,LIU H. Density and temperature reconstruction of a flame-induced distorted flow field based on background-oriented schlieren (BOS) technique[J]. Chinese Physics B,2017,26(6):064701. doi: 10.1088/1674-1056/26/6/064701
|
[62] |
TAN D J,EDGINGTON-MITCHELL D,HONNERY D. Measurement of density in axisymmetric jets using a novel background-oriented schlieren (BOS) technique[J]. Experi-ments in Fluids,2015,56(11):1-11. doi: 10.1007/s00348-015-2076-6
|
[63] |
OHNO H,TOYA K. Scalar potential reconstruction method of axisymmetric 3D refractive index fields with background-oriented schlieren[J]. Optics Express,2019,27(5):5990. doi: 10.1364/oe.27.005990
|
[64] |
KLEMKOWSKY J N,FAHRINGER T W,CLIFFORD C J,et al. Plenoptic background oriented schlieren imaging[J]. Measurement Science and Technology,2017,28(9):095404. doi: 10.1088/1361-6501/aa7f3d
|
[65] |
KLEMKOWSKY J N,CLIFFORD C J,BATHEL B F,et al. A direct comparison between conventional and plenoptic background oriented schlieren imaging[J]. Measurement Science and Technology,2019,30(6):064001. doi: 10.1088/1361-6501/ab1837
|
[66] |
VENKATAKRISHNAN L,SURIYANARAYANAN P. Density field of supersonic separated flow past an afterbody nozzle using tomographic reconstruction of BOS data[J]. Experiments in Fluids,2009,47(3):463-473. doi: 10.1007/s00348-009-0676-8
|
[67] |
SOURGEN F, HAERTIG J, REY C. Comparison between background oriented schlieren measurements (BOS) and numerical simulations[C]//Proc of the 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2004: 1–18. doi: 10.2514/6.2004-2602
|
[68] |
NICOLAS F,TODOROFF V,PLYER A,et al. A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measure-ments[J]. Experiments in Fluids,2015,57(1):1-21. doi: 10.1007/s00348-015-2100-x
|
[69] |
ATCHESON B,IHRKE I,HEIDRICH W,et al. Time-resolved 3d capture of non-stationary gas flows[J]. ACM Transactions on Graphics,2008,27(5):1-9. doi: 10.1145/1409060.1409085
|
[70] |
GRAUER S J,UNTERBERGER A,RITTLER A,et al. Instantaneous 3D flame imaging by background-oriented schlieren tomography[J]. Combustion and Flame,2018,196:284-299. doi: 10.1016/j.combustflame.2018.06.022
|
[71] |
HARTMANN U,SEUME J R. Combining ART and FBP for improved fidelity of tomographic BOS[J]. Measurement Science and Technology,2016,27(9):097001. doi: 10.1088/0957-0233/27/9/097001
|
[72] |
GRAUER S J,STEINBERG A M. Fast and robust volumetric refractive index measurement by unified background-oriented schlieren tomography[J]. Experi-ments in Fluids,2020,61(3):1-17. doi: 10.1007/s00348-020-2912-1
|
[73] |
WANG Q,YU T,LIU H C,et al. Optimization of camera arrangement for volumetric tomography with constrained optical access[J]. Journal of the Optical Society of America B,2020,37(4):1231. doi: 10.1364/josab.385291
|
[74] |
HEINECK J T,BANKS D W,SMITH N T,et al. Background-oriented schlieren imaging of supersonic aircraft in flight[J]. AIAA Journal,2020,59(1):11-21. doi: 10.2514/1.J059495
|
[75] |
TIPNIS T J,FINNIS M V,KNOWLES K,et al. Density measurements for rectangular free jets using background-oriented schlieren[J]. The Aeronautical Journal,2013,117(1194):771-785. doi: 10.1017/s0001924000008447
|
[76] |
OTA M,KURIHARA K,AKI K,et al. Quantitative density measurement of the lateral jet/cross-flow interaction field by colored-grid background oriented schlieren (CGBOS) technique[J]. Journal of Visualization,2015,18(3):543-552. doi: 10.1007/s12650-015-0297-7
|
[77] |
RAMANAH D,RAGHUNATH S,MEE D J,et al. Background oriented schlieren for flow visualisation in hypersonic impulse facilities[J]. Shock Waves,2007,17(1-2):65-70. doi: 10.1007/s00193-007-0097-7
|
[78] |
WANG C P,XU P,XUE L S,et al. Three-dimensional reconstruction of incident shock/boundary layer interaction using background-oriented schlieren[J]. Acta Astronau-tica,2019,157:341-349. doi: 10.1016/j.actaastro.2019.01.002
|
[79] |
赵玉新,易仕和,田立丰,等. 超声速混合层气动光学畸变与抖动: BOS测量技术及其应用[J]. 中国科学G辑,2010,40(1):33-46. doi: 10.1016/j.actaastro.2019.01.002
|
[80] |
冈敦殿,易仕和,米琦,等. 超声速湍流边界层与圆柱相互作用实验研究[J]. 航空学报,2022,43(1):626104. DOI: 10.7527/S1000-6893.2021.26104
GANG D D,YI S H,MI Q,et al. , Experimental study on the interaction between supersonic turbulent boundary layer and cylinder[J]. Acta Aeronautica et Astronautica Sinica,2022,43(1):626104. doi: 10.7527/S1000-6893.2021.26104
|
[81] |
郑文鹏,易仕和,牛海波,等. 高超声速4∶1椭圆锥横流不稳定性实验研究[J]. 物理学报,2021,70(24):244702. DOI: 10.7498/aps.70.20210807
ZHENG W P,YI S H,NIU H B,et al. Experimental research on crossflow instability for a hypersonic 4∶1 elliptic cone[J]. Acta Physica Sinica,2021,70(24):244702. doi: 10.7498/aps.70.20210807
|
[82] |
NICOLAS F,DONJAT D,LÉON O,et al. 3D reconstruction of a compressible flow by synchronized multi-camera BOS[J]. Experiments in Fluids,2017,58(5):1-15. doi: 10.1007/s00348-017-2325-y
|
[83] |
LUO H W,KUSUNOSE J,PINTON G,et al. Rapid quantitative imaging of high intensity ultrasonic pressure fields[J]. The Journal of the Acoustical Society of America,2020,148(2):660. doi: 10.1121/10.0001689
|
[84] |
WEILENMANN M,DOLL U,BOMBACH R,et al. Linear and nonlinear entropy-wave response of technically-premixed jet-flames-array and swirled flame to acoustic forcing[J]. Proceedings of the Combustion Institute,2021,38(4):6135-6143. doi: 10.1016/j.proci.2020.06.233
|
[85] |
ZHANG G Y,WANG G Q,HUANG Y,et al. Reconstruction and simulation of temperature and CO2 concentration in an axisymmetric flame based on TDLAS[J]. Optik,2018,170:166-177. doi: 10.1016/j.ijleo.2018.05.123
|
[86] |
GAO Y,BOHLIN A,SEEGER T,et al. In situ determination of N2 broadening coefficients in flames for rotational CARS thermometry[J]. Proceedings of the Combustion Institute,2013,34(2):3637-3644. doi: 10.1016/j.proci.2012.05.010
|
[87] |
QIN X,XIAO X D,PURI I K,et al. Effect of varying composition on temperature reconstructions obtained from refractive index measurements in flames[J]. Combustion and Flame,2002,128(1-2):121-132. doi: 10.1016/S0010-2180(01)00338-8
|
[88] |
IFFA E D,AZIZ A R A,MALIK A S. Gas flame temperature measurement using background oriented schlieren[J]. Journal of Applied Sciences,2011,11(9):1658-1662. doi: 10.3923/jas.2011.1658.1662
|
[89] |
王根娟,杨臧健,孟晟,等. 背景纹影定量化在层流轴对称火焰温度场测量中的应用研究[J]. 实验流体力学,2016,30(2):103-110. DOI: 10.11729/syltlx20150083
WANG G J,YANG Z J,MENG S,et al. Application of quantitative background oriented schlieren in laminar axisymmetric flame temperature measurement[J]. Journal of Experiments in Fluid Mechanics,2016,30(2):103-110. doi: 10.11729/syltlx20150083
|
[90] |
孟晟,杨臧健,王明晓,等. 纹影定量化在火焰温度测量中的应用[J]. 实验流体力学,2015,29(4):65-69. DOI: 10.11729/syltlx20140117
MENG S,YANG Z J,WANG M X,et al. Application of quantitative schlieren method in flame temperature measurement[J]. Journal of Experiments in Fluid Mecha-nics,2015,29(4):65-69. doi: 10.11729/syltlx20140117
|
[91] |
LIU H C,HUANG J Q,LI L,et al. Volumetric imaging of flame refractive index, density, and temperature using background-oriented Schlieren tomography[J]. Science China Technological Sciences,2021,64(1):98-110. doi: 10.1007/s11431-020-1663-5
|
[92] |
LIU H C,SHUI C Y,CAI W W. Time-resolved three-dimensional imaging of flame refractive index via endoscopic background-oriented Schlieren tomography using one single camera[J]. Aerospace Science and Technology,2020,97:105621. doi: 10.1016/j.ast.2019.105621
|
[93] |
WEILENMANN M, XIONG Y, BOTHIEN M, et al. Background oriented schlieren of fuel jet flapping under thermoacoustic oscillations in a sequential combustor[C]//Proceedings of ASME Turbo Expo 2018: Turboma-chinery Technical Conference and Exposition. 2018. doi: 10.1115/GT2018-75517
|
[94] |
吴云,李应红. 等离子体流动控制研究进展与展望[J]. 航空学报,2015,36(2):381-405. DOI: 10.7527/S1000-6893.2014.0246
WU Y,LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica,2015,36(2):381-405. doi: 10.7527/S1000-6893.2014.0246
|
[95] |
TRALDI E,BOSELLI M,SIMONCELLI E,et al. Schlieren imaging: a powerful tool for atmospheric plasma diagnos-tic[J]. EPJ Techniques and Instrumentation,2018,5:4. doi: 10.1140/epjti/s40485-018-0045-1
|
[96] |
JIN J,MURSENKOVA I V,SYSOEV N N,et al. Experimental investigation of blast waves from plasma sheet using the background oriented schlieren and shadow methods[J]. Journal of Flow Visualization and Image Processing,2011,18(4):311-328. doi: 10.1615/jflowvisimageproc.2012004373
|
[97] |
BLUNCK D L,KIEL B V,GOSS L,et al. Spatial development and temperature of spark kernels exiting into quiescent air[J]. Journal of Propulsion and Power,2012,28(3):458-465. doi: 10.2514/1.B34131
|
[98] |
WANG Q S,GENG J H,WANG P,et al. Measurement of discharge channel based on background oriented schlieren technique using an optimized algorithm[J]. AIP Advances,2021,11(6):065114. doi: 10.1063/5.0049042
|
[99] |
KOMURO A,OGURA N,ITO M,et al. Visualization of density variations produced by alternating-current dielectric-barrier-discharge plasma actuators using the background-oriented schlieren method[J]. Plasma Sources Science and Technology,2019,28(5):055002. doi: 10.1088/1361-6595/ab1465
|
[100] |
SINGH B,RAJENDRAN L K,ZHANG J C,et al. Vortex rings drive entrainment and cooling in flow induced by a spark discharge[J]. Physical Review Fluids,2020,5(11):114501. doi: 10.1103/physrevfluids.5.114501
|
[101] |
RAJENDRAN L K,SINGH B,VLACHOS P P,et al. Filamentary surface plasma discharge flow length and time scales[J]. Journal of Physics D:Applied Physics,2021,54(20):205201. doi: 10.1088/1361-6463/abe66a
|
[102] |
KANEKO Y,NISHIDA H,TAGAWA Y. Background-oriented schlieren measurement of near-surface density field in surface dielectric-barrier-discharge[J]. Measurement Science and Technology,2021,32(12):125402. doi: 10.1088/1361-6501/ac1ccc
|
[1] | YAN Bo, SUN Yongchao, ZHU Jiajian, WU Ge, WAN Minggang, TIAN Yifu, CHEN Shuang, SUN Mingbo. Investigation of unburned/preheated area characteristics of a premixed flame under transverse acoustic excitation based on acetone and CH2O PLIF technology[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 139-145. DOI: 10.11729/syltlx20210111 |
[2] | WANG Junqi, CHEN Zheng, NI Zhaoyong, GAN Caijun, LI Lang. Experimental study on structural characteristics of separation flow induced by 3D wedge in hypersonic laminar flow by oil visualization[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 115-120. DOI: 10.11729/syltlx20180026 |
[3] | WU Ning, TANG Xin, DUAN Zhuoyi, ZHANG Yanjun. Transition measurement for the nature-laminar wing based on TSP technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 66-70. DOI: 10.11729/syltlx20190085 |
[4] | Cheng Liuwei, Zhong Fengquan, Du Mengmeng, Gu Hongbin, Zhang Xinyu. Study of characterization methods of supersonic combustion flame based on fractal geometry[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 97-102. DOI: 10.11729/syltlx20180084 |
[5] | Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150 |
[6] | Deng Kai, Li Hua, Yang Zangjian, Zhong Yingjie. Investigation of heat transfer and flame dynamics under acoustic excitation based on infrared and shadow method[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 26-31. DOI: 10.11729/syltlx20160069 |
[7] | Jiang Yongjun, Yang Bin, He Yuan, Zhou Wu, Cai Xiaoshu. Combined flame radiation and cross-correlation method for velocity measurement of burning particles[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 71-75. DOI: 10.11729/syltlx20150106 |
[8] | Wang Genjuan, Yang Zangjian, Meng Sheng, Wang Mingxiao, Zhong Yingjie. Application of quantitative background oriented schlieren in laminar axisymmetric flame temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 103-110. DOI: 10.11729/syltlx20150083 |
[9] | GENG Zi-hai, LIU Shuang-ke, WANG Xun-nian, ZHANG Yang. Test study of drag reduction technique by hybrid laminar flow control with two-dimension airfoil[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 46-50. DOI: 10.3969/j.issn.1672-9897.2010.01.009 |
[10] | LIU Chang-wen, LIU Jie, WANG Shi-kang. Laser diagnosis of velocity profile in oil-water stratified flow[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(2): 83-87. DOI: 10.3969/j.issn.1672-9897.2000.02.015 |
1. |
倪章松,张军,符澄,王邦毅,李宇. 磁浮飞行风洞试验技术及应用需求分析. 空气动力学学报. 2021(05): 95-110 .
![]() | |
2. |
赵亚玲,陈斐. 水下航行器电子设备环境应力测试方法研究. 舰船科学技术. 2019(20): 43-45 .
![]() |