SONG Y J,LIAO D X,CHEN W H,et al. Design and property analysis on insulation structure of cryogenic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):61-67.. DOI: 10.11729/syltlx20200137
Citation: SONG Y J,LIAO D X,CHEN W H,et al. Design and property analysis on insulation structure of cryogenic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):61-67.. DOI: 10.11729/syltlx20200137

Design and property analysis on insulation structure of cryogenic wind tunnel

More Information
  • Received Date: November 01, 2020
  • Revised Date: January 12, 2021
  • Available Online: September 28, 2021
  • The cryogenic wind tunnel is the best way to achieve flight Reynolds number testing in engineering application, with great strategy importance in the national defense field. The insulation structure has become one of the key technologies for building large cryogenic wind tunnels. On this account, design and property analysis on insulation structure is investigated with the help of numerical simulation and experiment. Firstly, considering the wind tunnel working condition, design and material selection for the insulation structure is carried out. Then, the finite element modeling of the insulation structure is built. On this basis, the property of the insulation structure is numerically studied based on the actual worst working condition of the wind tunnel. The insulation characteristics and stress/displacement distribution of the insulation structure are analyzed. Finally, the experimental platform able to simulate the working condition of cryogenic wind tunnel is designed and constructed to carry out the temperature and stress/strain measurement experiment for the insulation structure under cryogenic alternating pressure working condition. The obtained results show that the designed insulation structure satisfies the demands of the cryogenic wind tunnel in service, which solves the problem of insulation structure designation. Additionally, the designed experimental platform solves the problem of property evaluation of the insulation structure, which paves the way for building the cryogenic wind tunnel of our country in the future.
  • [1]
    刘政崇. 风洞结构设计[M]. 北京: 中国宇航出版社, 2005.

    LIU Z C. Wind tunnel construction design[M]. Beijing: China Astronautic Publishing House, 2005.
    [2]
    张振,牛玲. 低温风洞的发展现状与关键技术(英文)[J]. 低温工程,2015(2):57-62. DOI: 10.3969/j.issn.1000-6516.2015.02.011

    ZHANG Z,NIU L. Current status and key technologies of cryogenic wind tunnel[J]. Cryogenics,2015(2):57-62. doi: 10.3969/j.issn.1000-6516.2015.02.011
    [3]
    赖欢,陈振华,高荣,等. 大型高速低温风洞冷量回收的方法研究[J]. 西安交通大学学报,2016,50(6):136-142. DOI: 10.7652/xjtuxb201606021

    LAI H,CHEN Z H,GAO R,et al. Cold energy recycle from cryogenic wind tunnel exhaust system[J]. Journal of Xi'an Jiaotong University,2016,50(6):136-142. doi: 10.7652/xjtuxb201606021
    [4]
    陈振华,张伟,高荣,等. 液氮抽真空制冷的理论及试验[J]. 航空动力学报,2019,34(9):1971-1976. DOI: 10.13224/j.cnki.jasp.2019.09.014

    CHEN Z H,ZHANG W,GAO R,et al. Theoretical and experimental studies of vacuum cooling of liquid nitrogen[J]. Journal of Aerospace Power,2019,34(9):1971-1976. doi: 10.13224/j.cnki.jasp.2019.09.014
    [5]
    WAHLS R. The National Transonic Facility - A research retro-spective[C]//Proc of the 39th Aerospace Sciences Meeting and Exhi-bit. 2001. doi: 10.2514/6.2001-754
    [6]
    STOKER R, GUTIERREZ R, LARSSEN J, et al. High Reynolds number aeroacoustics testing in NASA's national transonic facility (NTF)[C]//Proc of the 46th AIAA Aerospace Sciences Meeting and Exhibit. 2008. doi: 10.2514/6.2008-838
    [7]
    RIVERS M,QUEST J,RUDNIK R. Comparison of the NASA common research model European transonic wind tunnel test data to NASA national transonic facility test data[J]. CEAS Aeronautical Journal,2018,9(2):307-317. doi: 10.1007/s13272-017-0250-7
    [8]
    AHLEFELDT T,KOOP L. Microphone-array measurements in a cryogenic wind tunnel[J]. AIAA Journal,2010,48(7):1470-1479. doi: 10.2514/1.J050083
    [9]
    GREEN J,QUEST J. A short history of the European Transonic Wind Tunnel ETW[J]. Progress in Aerospace Sciences,2011,47(5):319-368. doi:10.1016/j. paerosci. 2011.06. 002
    [10]
    None. Mechanical completion on schedule at European Transonic Windtunnel[J]. Aircraft Engineering and Aerospace Technology,1993,65(4):24-25. doi: 10.1108/eb037369
    [11]
    PERRAUD J, SCHRAUF G, ARCHAMBAUD I, et al. Transonic high Reynolds number transition experiments in the ETW cryogenic wind tunnel[C]//Proc of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010. doi: 10.2514/6.2010-1300
    [12]
    HEIDEBRECHT A. Simulation and model support correction for slotted wall transonic wind tunnels[J]. International Journal of Engi-neering Systems Modelling and Simulation,2013,5(1/2/3):33-43. doi:10.1504/ijesms. 2013.052378
    [13]
    麻越垠,聂旭涛,陈万华,等. 基于响应面法的低温风洞扩散段热力学模型修正[J]. 实验流体力学,2017,31(4):71-78. DOI: 10.11729/syltlx20160133

    MA Y Y,NIE X T,CHEN W H,et al. Thermodynamics model updating of cryogenic wind tunnel diffuser based on response surface method[J]. Journal of Experiments in Fluid Mechanics,2017,31(4):71-78. doi: 10.11729/syltlx20160133
    [14]
    张志秋,陈振华,聂旭涛,等. 基于流固热耦合低温风洞扩散段热力学特性分析[J]. 实验流体力学,2016,30(6):18-25. DOI: 10.11729/syltlx20160100

    ZHANG Z Q,CHEN Z H,NIE X T,et al. Thermodynamic characteristic analysis of the cryogenic wind tunnel diffuser section based on fluid-thermal-structural coupling[J]. Journal of Experiments in Fluid Mechanics,2016,30(6):18-25. doi: 10.11729/syltlx20160100
    [15]
    廖达雄,黄知龙,陈振华,等. 大型低温高雷诺数风洞及其关键技术综述[J]. 实验流体力学,2014,28(2):1-6, 20. DOI: 10.11729/syltlx20130102

    LIAO D X,HUANG Z L,CHEN Z H,et al. Review on large-scale cryogenic wind tunnel and key technologies[J]. Journal of Experi-ments in Fluid Mechanics,2014,28(2):1-6, 20. doi: 10.11729/syltlx20130102
    [16]
    宋远佳,陈振华,赖欢,等. 低温风洞绝热系统的研究现状及其关键技术[J]. 哈尔滨工业大学学报,2019,51(7):63-69. DOI: 10.11918/j.issn.0367-6234.201801115

    SONG Y J,CHEN Z H,LAI H,et al. Development and key technology of cryogenic wind tunnel insulation system[J]. Journal of Harbin Institute of Technology,2019,51(7):63-69. doi: 10.11918/j.issn.0367-6234.201801115
    [17]
    张建可. 软质聚氨酯泡沫塑料的低温热导率[J]. 低温物理学报,2009,31(3):257-260.

    ZHANG J K. The thermal conductivity of flexible polyurethane foams at low temperature[J]. Chinese Journal of Low Temperature Physics,2009,31(3):257-260.
    [18]
    齐威. ABAQUS 6.14超级学习手册[M]. 北京: 人民邮电出版社, 2016.
    [19]
    王翰林,刘清念,周翔,等. 基于Workbench的聚氨酯泡沫塑料低温内绝热单元结构优化设计[J]. 塑料工业,2018,46(10):123-126, 139. DOI: 10.3969/j.issn.1005-5770.2018.10.031

    WANG H L,LIU Q N,ZHOU X,et al. Optimal design of polyurethane foam cryogenic insulation cell structure based on workbench[J]. China Plastics Industry,2018,46(10):123-126, 139. doi: 10.3969/j.issn.1005-5770.2018.10.031
  • Related Articles

    [1]YAN Bo, SUN Yongchao, ZHU Jiajian, WU Ge, WAN Minggang, TIAN Yifu, CHEN Shuang, SUN Mingbo. Investigation of unburned/preheated area characteristics of a premixed flame under transverse acoustic excitation based on acetone and CH2O PLIF technology[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 139-145. DOI: 10.11729/syltlx20210111
    [2]WANG Junqi, CHEN Zheng, NI Zhaoyong, GAN Caijun, LI Lang. Experimental study on structural characteristics of separation flow induced by 3D wedge in hypersonic laminar flow by oil visualization[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 115-120. DOI: 10.11729/syltlx20180026
    [3]WU Ning, TANG Xin, DUAN Zhuoyi, ZHANG Yanjun. Transition measurement for the nature-laminar wing based on TSP technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 66-70. DOI: 10.11729/syltlx20190085
    [4]Cheng Liuwei, Zhong Fengquan, Du Mengmeng, Gu Hongbin, Zhang Xinyu. Study of characterization methods of supersonic combustion flame based on fractal geometry[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 97-102. DOI: 10.11729/syltlx20180084
    [5]Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150
    [6]Deng Kai, Li Hua, Yang Zangjian, Zhong Yingjie. Investigation of heat transfer and flame dynamics under acoustic excitation based on infrared and shadow method[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 26-31. DOI: 10.11729/syltlx20160069
    [7]Jiang Yongjun, Yang Bin, He Yuan, Zhou Wu, Cai Xiaoshu. Combined flame radiation and cross-correlation method for velocity measurement of burning particles[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 71-75. DOI: 10.11729/syltlx20150106
    [8]Wang Genjuan, Yang Zangjian, Meng Sheng, Wang Mingxiao, Zhong Yingjie. Application of quantitative background oriented schlieren in laminar axisymmetric flame temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 103-110. DOI: 10.11729/syltlx20150083
    [9]GENG Zi-hai, LIU Shuang-ke, WANG Xun-nian, ZHANG Yang. Test study of drag reduction technique by hybrid laminar flow control with two-dimension airfoil[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 46-50. DOI: 10.3969/j.issn.1672-9897.2010.01.009
    [10]LIU Chang-wen, LIU Jie, WANG Shi-kang. Laser diagnosis of velocity profile in oil-water stratified flow[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(2): 83-87. DOI: 10.3969/j.issn.1672-9897.2000.02.015
  • Cited by

    Periodical cited type(2)

    1. 倪章松,张军,符澄,王邦毅,李宇. 磁浮飞行风洞试验技术及应用需求分析. 空气动力学学报. 2021(05): 95-110 .
    2. 赵亚玲,陈斐. 水下航行器电子设备环境应力测试方法研究. 舰船科学技术. 2019(20): 43-45 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (674) PDF downloads (39) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close