微型涡流发生器影响下的湍流边界层流场与摩阻特性

张奕, 潘翀, 窦建宇, 张淼

张奕, 潘翀, 窦建宇, 等. 微型涡流发生器影响下的湍流边界层流场与摩阻特性[J]. 实验流体力学, 2023, 37(4): 48-58. DOI: 10.11729/syltlx20230027
引用本文: 张奕, 潘翀, 窦建宇, 等. 微型涡流发生器影响下的湍流边界层流场与摩阻特性[J]. 实验流体力学, 2023, 37(4): 48-58. DOI: 10.11729/syltlx20230027
ZHANG Y, PAN C, DOU J Y, et al. Flowfield and friction characteristics downstream of mirco vortex generator in turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 48-58. DOI: 10.11729/syltlx20230027
Citation: ZHANG Y, PAN C, DOU J Y, et al. Flowfield and friction characteristics downstream of mirco vortex generator in turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 48-58. DOI: 10.11729/syltlx20230027

微型涡流发生器影响下的湍流边界层流场与摩阻特性

基金项目: 国家自然科学基金项目(91952302,11721202)
详细信息
    作者简介:

    张奕: (1998—),男,辽宁辽阳人,博士研究生。研究方向:湍流与流动控制。通信地址:北京市海淀区学院路37号(100191)。E-mail:zhangyi05@buaa.edu.cn

    通讯作者:

    张淼: E-mail:zhangmiao@comac.cc

  • 中图分类号: V211.7

Flowfield and friction characteristics downstream of mirco vortex generator in turbulent boundary layer

  • 摘要: 在中等雷诺数平板湍流边界层中,利用体视粒子图像测速技术与免标定双层热膜摩阻传感器,测量了单排楔形微型涡流发生器阵列下游的速度场与摩阻,以研究微型涡流发生器对湍流统计量和摩阻特性的影响。速度场测量结果表明:微型涡流发生器诱导下游湍流边界层内产生时均流向涡对和时均流向速度亏损区,导致流向脉动速度的展向预乘能谱出现第二外区峰值。速度场本征正交分解的结果表明:微型涡流发生器诱导产生的流动结构与湍流边界层内的大、超大尺度结构的能量贡献相当,并影响了近壁含能结构的空间分布。摩阻测量实验表明:具有较高高度、展向排列更密集的微型涡流发生器阵列的减摩阻率更高,减摩阻效果可持续至下游80倍自身特征高度处。
    Abstract: The present work uses the stereoscopic particle image velocimetry and calibration-free dual hot-film wall shear stress measurement sensor to measure the flowfield and friction at downstream of the one array of forwards wedge Micro Vortex Generator (MVG) in the turbulent boundary layer at moderate Reynolds number. The result of flowfield measurement shows that MVG produces the streamwise velocity defect regions and streamwise vortices pairs in downstream time-averaged flowfield, which causes the second outer-peak in the spanwise pre-multiplied energy spectra. The result of proper orthogonal decomposition shows that the contribution of energy of structures induced by MVG is equivalent to the that of large-scale structures and very large-scale structures in the smooth-wall turbulent boundary layer, which also significantly affects the spatial distribution of the near-wall structures. The friction measurement experiment shows that MVG array with higher height and closer spanwise arrangement has higher friction drag reduction. The drag reduction effect of MVG lasts downstream to 80 times of its own characteristic height.
  • 现代机载武器在外形设计、总体布置以及结构形式上除了必须满足机载武器的常规要求外,还要尽可能满足武器内埋以及多弹并列、串列挂载的要求,这些空间和尺寸上的条件约束为其升力面和控制面的设计带来了极大的困难和挑战,同时舵面操纵效能、舵面铰链力矩与小型化舵机的匹配性等矛盾也十分突出。栅格翼[1]作为一种非常规的升力面和控制面,在升力特性、铰链力矩特性和外形尺寸方面都优于传统平板翼,这些都为其在现代机载武器特别是小型化武器上的广泛应用奠定了基础。

    目前,栅格翼虽已成功应用于宇宙飞船救生逃逸系统和一些常规战术导弹上,国内外对其气动特性也开展了大量的实验与数值模拟研究,如Mark S. Miller等通过改变栅格翼边框和栅格壁前后缘形状等开展了减阻特性的试验研究[2];Gregg Abate等通过风洞实验研究了跨声速阶段栅格翼的气流壅塞现象对气动特性的影响[3];而陈少松等开展了栅格翼的减阻特性及格宽翼弦比对其气动特性的影响研究[4-5]等。数值模拟研究方面,Karl S. Orthner等采用非结构网格方法对栅格翼的跨声速气流壅塞现象进行了研究[6];James Despirito等对带栅格翼和平板翼鸭式布局导弹气动特性进行了数值计算,并对栅格尾翼的滚转控制性能进行了研究[7];刘刚等采用结构、非结构混合网格对不同舵偏角下的栅格翼构型进行了数值模拟[8];吴晓军等对多种不同外形单栅格的气动特性开展了数值计算[9]。以上工作广泛地开展了栅格翼相关气动特性的研究,但大多数研究集中于单栅格翼的气动特性或单一类型栅格翼及其尾身组合体的气动特性,对尾身组合体构型下不同类型栅格翼的气动特性研究尚显不足,而且国内有关栅格翼气动特性的试验研究开展得相对较少,这些都阻碍了对栅格翼气动特性的深入认识及其进一步的应用。

    栅格翼因外部框架和内部栅格布置的不同而分为不同的类型,如框架式、蜂窝式等,并且栅格翼的布局形式及外形参数对其气动特性有非常重要的影响[1]。本文针对栅格翼尾身组合体模型,采用常规测力天平,实现了尾身组合体不同类型栅格翼全量气动特性的试验研究,获得了简单框架式、正置蜂窝式以及不同网格密度的斜置蜂窝式4种栅格翼的亚声速和跨声速气动特性,并将其气动特性与平板翼进行了对比,同时研究了弹身迎风侧和背风侧不同位置对栅格翼气动特性的影响。

    图 1给出了试验的不同类型栅格翼尾身组合体模型,由旋成体弹身、×型尾翼等组成。尾翼安装平面与构造水平对称面夹角为45°。试验时,只对1片尾翼进行气动力测量,分别位于1#或3#方位(从尾部向前看分别位于弹体轴yz平面的1和3象限)。尾翼包括1种平板尾翼PF0和4种栅格尾翼(编号分别为GF0+、GF4+、GFX1、GFX2),4种栅格翼的表面积近似相等,翼元格的形状和数量不同,其中GF0+为简单框架式,GF4+为正置蜂窝式,GFX1和GFX2为网格密度不同的斜置蜂窝式栅格翼。试验中尾翼仅作俯仰偏转控制,4片尾翼同时偏转。各类型尾翼的详细结构及尺寸见图 2

    图  1  尾身组合体模型栅格翼测力方案示意图
    Fig.  1  Sketch of model with body and tail and force test of grid fin
    图  2  平板翼与栅格翼外形图
    Fig.  2  Sketch of planar and grid fins

    对于舵面气动特性的测量,试验一般采用专门的铰链力矩天平[10],栅格翼的突出特点是其铰链力矩较小,但同时会带来较大阻力。一般舵面的铰链力矩试验并不测量其阻力,结合本项研究的目的,采用常规的测力天平来测量栅格翼的气动特性,尾身组合体模型采用尾部支撑,待测栅格翼与天平连接,每次测试一个栅格翼的气动力,其余栅格翼起干扰翼的作用。该方法不需要增加额外的翼天平,使用一个天平即可实现不同位置栅格翼全量气动特性的测量,具有模型设计简单的优点,并克服了在较小尺寸模型上安装铰链力矩天平的困难,同时又能测量栅格翼气动力和力矩的全部分量。

    试验在试验段横截面尺寸为0.6 m×0.6 m的直流暂冲式跨超声速风洞中进行,试验马赫数Ma为0.8、1.2,模型迎角范围为-4°~14°,尾翼舵偏角为-10°、-5°、0°。

    本项研究共获得了1种平板翼和4种栅格翼6个分量的气动力特性数据,尾翼气动力和力矩系数分别在相应的舵面固连坐标系中给出。下面对尾身组合体不同类型栅格翼的主要气动特性进行分析。

    图 3给出了1#位平板翼和4种栅格翼在不同马赫数及俯仰舵偏角下轴向力系数随迎角的变化曲线。对于平板翼,轴向力随迎角及舵偏角的变化符合基本规律。δz=0°时,4种栅格翼轴向力在小迎角范围内随迎角变化较小。从不同类型尾翼轴向力的对比曲线可知,与平板翼相比,此时栅格翼表现出了其突出特点,轴向力较大[6],简单框架式栅格翼GF0+的轴向力在4种栅格翼中最小,无舵偏角时,正置蜂窝式GF4+与斜置蜂窝式GFX1的轴向力较为接近,随翼元格数增加,GFX2的轴向力最大。栅格翼的阻力主要取决于其结构和栅格管内的流动状态[7],4种栅格翼具有相同的浸润面积,所以阻力的差别主要来源于管内的复杂流动引起的压差阻力。随着舵偏角的增加,无论是亚声速还是跨声速,4种栅格翼的轴向力有逐渐接近的趋势,Ma=1.2,δz=-10°时,4种栅格翼轴向力的差别明显变小。

    图  3  1#位不同类型尾翼轴向力系数
    Fig.  3  Comparison of axis force coefficients for different fins at 1# location

    图 4是各马赫数和舵偏角下4种栅格翼的法向力系数随迎角的变化曲线。总的来说,对于不同类型栅格翼的法向力系数,在中等迎角以下,法向力随迎角基本呈线性变化,无舵偏角和小舵偏角时,GF0+和GF4+表现出了更好的法向力特性,当舵偏角较大时,2种斜置蜂窝式栅格翼法向力特性较优。4种栅格翼具有近似相等的升力面积,但自较小迎角开始,几种栅格翼的法向力已有较大差别,某些状态下4种栅格翼的法向力在较大迎角时均存在失速现象,且失速迎角均小于平板翼。对于GF0+,Ma=0.8,δz=-10°,在负迎角时,法向力随迎角变化不明显,这是因为此时当地有效迎角增大,栅格翼处于失速的状态,故法向力变化不大,从图中结果可以看出,在相同条件下,GF4+具有相类似的结果,而2种斜置蜂窝式栅格翼则不存在这种现象,可见栅格翼的结构形式对其法向力特性有较大影响。

    图  4  1#位不同类型尾翼法向力系数
    Fig.  4  Comparison of normal force coefficients for different fins at 1# location

    相对于平板翼,栅格翼的优点之一就是具有较好的铰链力矩特性[6],这一点从图 5的试验结果可以看出,栅格翼的铰链力矩特性普遍好于平板翼。与亚声速相比,跨声速时,各栅格翼的铰链力矩随迎角和舵偏角的变化范围较小。总的来说,对于4种栅格翼而言,斜置蜂窝式栅 格翼的铰链力矩特性优于另外2种栅格翼,密网格斜置蜂窝翼GFX2铰链力矩特性最优。

    图  5  1#位不同类型尾翼铰链力矩系数
    Fig.  5  Comparison of hinge moment coefficients for different fins at 1# location

    本文还研究了栅格翼处于尾身组合体迎风侧和背风侧不同位置时的气动特性。为了方便对比,不同位置栅格翼的气动力系数已经转换至统一方向的舵面坐标系中。图 678是1#位和3#位不同类型栅格翼气动特性的对比,亚声速时,对于GF4+,无舵偏角时,在绝大部分迎角下,处于背风侧1#位栅格翼的轴向力、法向力及铰链力矩均较大,迎风侧和背风侧栅格翼的铰链力矩随迎角的变化规律基本相同,随着舵偏角增加,法向力变化规律相似,但轴向力和铰链力矩在部分状态下发生明显变化,如δz=-5°时2个位置栅格翼的铰链力矩,δz=-10°时,大部分迎角下迎风侧3#位的轴向力较大;试验结果表明,对于其它类型的栅格翼,这种变化规律不具有必然性,如GF0+,当δz=-5°时,迎风侧3#位栅格翼的轴向力已经大于背风侧1#位的轴向力,并且不同舵偏角下2个位置栅格翼的铰链力矩相似性更好,量值更为接近;对于GFX2,亚声速时,不同位置时的轴向力变化规律与GF0+相似,但法向力差别较小;与亚声速时相比,跨声速时部分状态下2个位置栅格翼的轴向力和铰链力矩变化规律发生改变。

    图  6  不同位置栅格翼气动特性对比(Ma=0.8,GF4+)
    Fig.  6  Comparison of aerodynamic characteristics for grid fin at different locations
    图  7  不同位置栅格翼气动特性对比(Ma=0.8,GFX2)
    Fig.  7  Comparison of aerodynamic characteristics for grid fin at different locations
    图  8  不同位置栅格翼气动特性对比(Ma=1.2,GFX2)
    Fig.  8  Comparison of aerodynamic characteristics for grid fin at different locations

    对于尾身组合体构型,通过风洞试验研究了平板尾翼及不同类型栅格尾翼的气动特性,讨论了各类型栅格翼气动力的变化规律,对弹身迎风侧和背风侧栅格翼的气动力进行了对比分析,可以得到以下结论:

    (1) 采用了模型设计简单,同时又能测量栅格翼气动力和力矩全部分量的试验方法,该方法克服了在较小尺寸模型上安装铰链力矩天平的困难,不需要增加额外的翼天平,使用一个天平即可实现不同位置栅格翼全量气动特性的测量。

    (2) 对于不同类型的栅格翼,轴向力均大于平板翼,无舵偏角时,轴向力随迎角变化较小,4种栅格翼中,简单框架式GF0+的轴向力最小,随翼元格数增加,斜置蜂窝式栅格翼GFX2轴向力最大。

    (3) 某些状态下,4种栅格翼的法向力在较大迎角时均存在失速现象,且失速迎角均小于平板翼。对于栅格翼GF0+和GF4+,当舵偏角使栅格翼当地有效迎角增大时,栅格翼处于失速状态,法向力随迎角变化不大,而在相同条件下,2种斜置蜂窝式栅格翼则不存在这种现象,可见栅格翼的结构形式对其法向力有较大影响。

    (4) 4种栅格翼的铰链力矩特性普遍好于平板翼,密网格斜置蜂窝翼GFX2铰链力矩特性最优。与亚声速相比,跨声速时,各栅格翼的铰链力矩随迎角和舵偏角的变化范围较小。

    (5) 舵偏角对弹身迎风侧和背风侧栅格翼的轴向力和铰链力矩有较大影响,且不同类型栅格翼的变化规律也不尽相同;位置对密网格斜置蜂窝翼的法向力影响减弱。

  • 图  1   低速风洞中实验布置示意图

    Fig.  1   Schematic diagram of the experimental setup in the test section of a low-speed wind tunnel

    图  2   MVG阵列特征尺寸示意图

    Fig.  2   Schematic diagram of MVG array characteristic size

    图  3   光滑壁面工况下SPIV 测量结果与 DNS结果对比

    Fig.  3   The SPIV measurement results are compared with the DNS results under the smooth wall condition

    图  4   摩阻传感器及其测量结果

    Fig.  4   The friction sensor and its measurement results

    图  5   MVG阵列下游的时均速度场

    Fig.  5   Time averaged results of three velocity component fields behind MVG arrays

    图  6   MVG阵列下游的时均流向速度型与雷诺应力的展向平均结果

    Fig.  6   Spanwise average results of wall-normal profiles of time-averaged streamwise velocity and Reynolds stress behind MVG arrays

    图  7   光滑壁面及MVG0下游近、远尾迹区展向预乘能谱

    Fig.  7   Spanwise pre-multiplied energy spectra of smooth-wall and MVG0 arrays

    图  8   光滑壁面及MVG0工况近、远尾迹区POD分解所得各阶模态的能量占比及能量积累曲线

    Fig.  8   Energy ratio of each rank and the cumulative energy of the POD result of smooth-wall case and near- or far-wake regions of MVG0 case

    图  9   光滑壁面及基准MVG0工况近、远尾迹区流场第1、5、10、20阶POD模态的空间基$ {\varPsi }_{i} $(y, z

    Fig.  9   Rank 1, 5, 10 and 20 mode $ {\varPsi }_{i} $(y, z) of POD decomposition results of smooth-wall case and near- or far-wake regions of MVG0 case

    图  10   各型MVG阵列下游减摩阻率的沿程变化

    Fig.  10   Drag reduction in different streamwise stations behind each MVG arrays

    表  1   光滑壁面湍流边界层主要特征参数

    Table  1   Main characteristic parameters of the studied smooth-wall TBL

    U/(m·s−1)δ/cmuτ/(m·s−1)ReτReθHΔy+ Δz+ uτT/δ
    149.980.55345363531.34.5 4.511000
    下载: 导出CSV

    表  2   3种MVG阵列的主要几何参数

    Table  2   Main size of the three MVG array

    模型名称s/mmh/mml/mma/mm
    MVG0052010
    MVGs552010
    MVGh0102010
    下载: 导出CSV
  • [1]

    WANG W K, PAN C, WANG J J. Energy transfer structures associated with large-scale motions in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2021, 906: A14. doi: 10.1017/jfm.2020.777

    [2]

    WANG J J, PAN C, WANG J J. Characteristics of fluctuating wall-shear stress in a turbulent boundary layer at low-to-moderate Reynolds number[J]. Physical Review Fluids, 2020, 5(7): 074605. doi: 10.1103/physrevfluids.5.074605

    [3]

    LI B H, WANG K J, WANG Y F, et al. Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet[J]. Chinese Physics B, 2022, 31(2): 024702. doi: 10.1088/1674-1056/ac0da6

    [4]

    CHENG X Q, WONG C W, HUSSAIN F, et al. Flat plate drag reduction using plasma-generated streamwise vortices[J]. Journal of Fluid Mechanics, 2021, 918: A24. doi: 10.1017/jfm.2021.311

    [5]

    YAO J, CHEN X, THOMAS F, et al. Large-scale control strategy for drag reduction in turbulent channel flows[J]. Physical Review Fluids, 2017, 2(6): 062601. doi: 10.1103/physrevfluids.2.062601

    [6] 李楠, 吴光辉, 潘翀, 等. 小肋减阻的飞行试验方法、结果和分析[J]. 力学与实践, 2023, 45(1): 10–21.

    LI N, WU G H, PAN C, et al. Flight test method, result and analysis of small rib drag reduction[J]. Mechanics in Engineering, 2023, 45(1): 10–21.

    [7] 刘沛清, 张雯, 郭昊. 大型运输机的减阻技术[J]. 力学与实践, 2018, 40(2): 129–139, 154.

    LIU P Q, ZHANG W, GUO H. Drag reduction technique for large transport aircraft[J]. Mechanics in Engineering, 2018, 40(2): 129–139, 154.

    [8] 李晓辉, 王宏伟, 张淼, 等. Tomo-PIV亚跨声速风洞应用探索[J]. 实验流体力学, 2020, 34(4): 44–52. DOI: 10.11729/syltlx20190061

    LI X H, WANG H W, ZHANG M, et al. Application exploration of Tomo-PIV in the subsonic and transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 44–52. doi: 10.11729/syltlx20190061

    [9] 刘丽霞, 王康俊, 王鑫蔚, 等. 沟槽超疏水复合壁面湍流边界层减阻机理的TRPIV实验研究[J]. 实验流体力学, 2021, 35(1): 117–125. DOI: 10.11729/syltlx20200001

    LIU L X, WANG K J, WANG X W, et al. TRPIV experimental investigation of drag reduction mechanism in turbulent boundary layer over superhydrophobic-riblet surface[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 117–125. doi: 10.11729/syltlx20200001

    [10] 陈正云, 张清福, 潘翀, 等. 超疏水旋转圆盘气膜层减阻的实验研究[J]. 实验流体力学, 2021, 35(3): 52–59. DOI: 10.11729/syltlx20200025

    CHEN Z Y, ZHANG Q F, PAN C, et al. An experimental study on drag reduction of superhydrophobic rotating disk with air plastron[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 52–59. doi: 10.11729/syltlx20200025

    [11]

    PARK J, CHOI H. Effects of uniform blowing or suction from a spanwise slot on a turbulent boundary layer flow[J]. Physics of Fluids, 1999, 11(10): 3095–3105. doi: 10.1063/1.870167

    [12]

    DU Y Q, SYMEONIDIS V, KARNIADAKIS G E. Drag reduction in wall-bounded turbulence via a transverse travelling wave[J]. Journal of Fluid Mechanics, 2002, 457: 1–34. doi: 10.1017/s0022112001007613

    [13] 黄红波, 陆芳. 涡流发生器应用发展进展[J]. 武汉理工大学学报(交通科学与工程版), 2011, 35(3): 611–614, 618.

    HUANG H B, LU F. Research progress of vortex generator application[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2011, 35(3): 611–614, 618.

    [14] 刘刚, 刘伟, 牟斌, 等. 涡流发生器数值计算方法研究[J]. 空气动力学学报, 2007, 25(2): 241–244.

    LIU G, LIU W, MOU B, et al. CFD numerical simulation investigation of vortex generators[J]. Acta Aerodynamica Sinica, 2007, 25(2): 241–244.

    [15] 倪亚琴. 涡流发生器研制及其对边界层的影响研究[J]. 空气动力学学报, 1995, 13(1): 110–116.

    NI Y Q. Development of the vortex-generator and study on the effect of vortex-generator on boundary layer[J]. Acta Aerodynamica Sinica, 1995, 13(1): 110–116.

    [16]

    LIN J C, HOWARD F G, SELBY G V. Small submerged vortex generators for turbulent flow separation control[J]. Journal of Spacecraft and Rockets, 1990, 27(5): 503–507. doi: 10.2514/3.26172

    [17]

    PUJALS G, DEPARDON S, COSSU C. Drag reduction of a 3D bluff body using coherent streamwise streaks[J]. Experiments in Fluids, 2010, 49(5): 1085–1094. doi: 10.1007/s00348-010-0857-5

    [18]

    MA X Y, GEISLER R, SCHRÖDER A. Experimental investigation of three-dimensional vortex structures down-stream of vortex generators over a backward-facing step[J]. Flow, Turbulence and Combustion, 2017, 98(2): 389–415. doi: 10.1007/s10494-016-9768-8

    [19]

    YAO C, LIN J, ALLEN B. Flowfield measurement of device-induced embedded streamwise vortex on a flat plate[C]//Proc of the 1st Flow Control Conference, St. Louis, Missouri. 2002. doi: 10.2514/6.2002-3162

    [20]

    LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aero-space Sciences, 2002, 38(4-5): 389–420. doi: 10.1016/S0376-0421(02)00010-6

    [21]

    ASHILL P R, FULKER J L, HACKETT K C. A review of recent developments in flow control[J]. The Aeronautical Journal, 2005, 109(1095): 205–232. doi: 10.1017/s0001924000005200

    [22]

    ZAMAN K B M Q, HIRT S M, BENCIC T J. Boundary layer flow control by an array of ramp-shaped vortex generators[R]. NASA/TM—2012-217437, 2012.

    [23] 褚胡冰, 陈迎春, 张彬乾, 等. 增升装置微型涡流发生器数值模拟方法研究[J]. 航空学报, 2012, 33(1): 11–21.

    CHU H B, CHEN Y C, ZHANG B Q, et al. Investigation of numerical simulation technique for micro vortex generators applied to high lift system[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 11–21.

    [24]

    GIBERTINI G, BONIFACE J C, ZANOTTI A, et al. Helicopter drag reduction by vortex generators[J]. Aerospace Science and Technology, 2015, 47: 324–339. doi: 10.1016/j.ast.2015.10.004

    [25] 张进, 刘景源, 张彬乾. 微型涡流发生器对超临界翼型减阻机理实验与数值分析[J]. 实验流体力学, 2016, 30(4): 37–41. DOI: 10.11729/syltlx20150157

    ZHANG J, LIU J Y, ZHANG B Q. Experimental and CFD study on the mechanism of supercritical airfoil drag reduction with micro vortex generators[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 37–41. doi: 10.11729/syltlx20150157

    [26] 易海明, 申俊琦, 潘翀, 等. 平流层飞艇纵向气动特性及减阻实验研究[J]. 空气动力学学报, 2014, 32(5): 641–645,653. DOI: 10.7638/kqdlxxb-2013.0032

    YI H M, SHEN J Q, PAN C, et al. Experimental investigation on the longitudinal aerodynamic performance and drag reduction of a stratospheric airship[J]. Acta Aerodynamica Sinica, 2014, 32(5): 641–645,653. doi: 10.7638/kqdlxxb-2013.0032

    [27]

    CHAUHAN K A, MONKEWITZ P A, NAGIB H M. Criteria for assessing experiments in zero pressure gradient boundary layers[J]. Fluid Dynamics Research, 2009, 41(2): 021404. doi: 10.1088/0169-5983/41/2/021404

    [28]

    WANG S, GHAEMI S. Three-dimensional wake of non-conventional vortex generators[J]. AIAA Journal, 2019, 57(3): 949–961. doi: 10.2514/1.j057420

    [29]

    PAN C, XUE D, XU Y, et al. Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(10): 104704. doi: 10.1007/s11433-015-5719-y

    [30] 陈启刚, 钟强. 体视粒子图像测速技术研究进展[J]. 水力发电学报, 2018, 37(8): 38–54.

    CHEN Q G, ZHONG Q. Advances in stereoscopic particle image velocimetry[J]. Journal of Hydroelectric Engineering, 2018, 37(8): 38–54.

    [31]

    FEI R, MERZKIRCH W. Investigations of the measurement accuracy of stereo particle image velocimetry[J]. Experi-ments in Fluids, 2004, 37(4): 559–565. doi: 10.1007/s00348-004-0843-x

    [32] 陈钊, 郭永彩, 高潮. 三维PIV原理及其实现方法[J]. 实验流体力学, 2006, 20(4): 77–82, 105. DOI: 10.3969/j.issn.1672-9897.2006.04.015

    CHEN Z, GUO Y C, GAO C. Principle and technology of three-dimensional PIV[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 77–82, 105. doi: 10.3969/j.issn.1672-9897.2006.04.015

    [33]

    WATANABE T, ZHANG X, NAGATA K. Direct numerical simulation of incompressible turbulent boundary layers and planar jets at high Reynolds numbers initialized with implicit large eddy simulation[J]. Computers & Fluids, 2019, 194: 104314. doi: 10.1016/j.compfluid.2019.104314

    [34] 高南, 刘玄鹤. 实用化壁面切应力测量技术的综述与展望[J]. 空气动力学学报, 2023, 41(3): 1–24. DOI: 10.7638/kqdlxxb-2021.0450

    GAO N, LIU X H. A review of wall-shear-stress measure-ment techniques for practical applictions[J]. Acta Aero-dynamica Sinica, 2023, 41(3): 1–24. doi: 10.7638/kqdlxxb-2021.0450

    [35]

    LIU X H, LI Z Y, GAO N. An improved wall shear stress measurement technique using sandwiched hot-film sensors[J]. Theoretical and Applied Mechanics Letters, 2018, 8(2): 137–141. doi: 10.1016/j.taml.2018.02.010

    [36]

    LIU X H, LI Z Y, WU C J, et al. Toward calibration-free wall shear stress measurement using a dual hot-film sensor and Kelvin bridges[J]. Measurement Science and Tech-nology, 2018, 29(10): 105303. doi: 10.1088/1361-6501/aadb1b

    [37]

    LIU X H, WANG H, WU C J, et al. On the calibration-free two-component wall-shear-stress measurement technique using dual-layer hot-films[J]. Review of Scientific Instru-ments, 2020, 91(8): 085004. doi: 10.1063/5.0006705

    [38] 徐华舫. 空气动力学基础(上册)[M]. 修订版. 北京: 北京航空学院出版社, 1987.
    [39] 王建杰, 易海明, 潘翀, 等. 粗糙壁湍流研究现状综述[J]. 空气动力学学报, 2017, 35(5): 611–619. DOI: 10.7638/kqdlxxb-2017.0033

    WANG J J, YI H M, PAN C, et al. Progress in rough-wall turbulence[J]. Acta Aerodynamica Sinica, 2017, 35(5): 611–619. doi: 10.7638/kqdlxxb-2017.0033

    [40]

    ZHANG Q F, PAN C, WANG J J. De-asymmetry of small-scale motions in wall-bounded turbulence[J]. Physics of Fluids, 2022, 34(6): 065110. doi: 10.1063/5.0092548

    [41]

    DENG S C, PAN C, WANG J J, et al. On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number[J]. Journal of Fluid Mechanics, 2018, 844: 635–668. doi: 10.1017/jfm.2018.160

    [42]

    WANG L W, PAN C, WANG J J, et al. Statistical signatures of component wall-attached eddies in proper orthogonal decomposition modes of a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2022, 944: A26. doi: 10.1017/jfm.2022.495

    [43]

    BAI H L, GONG J L, LU Z B. Energetic structures in the turbulent boundary layer over a spanwise-heterogeneous converging/diverging riblets wall[J]. Physics of Fluids, 2021, 33(7): 075113. doi: 10.1063/5.0055767

  • 期刊类型引用(1)

    1. 田霖,樊文鹏,于建军,杜云鹏,郭光全,唐宏. 基于结构网格的栅格翼子弹翼身组合体气动特性. 科技风. 2023(08): 158-162 . 百度学术

    其他类型引用(1)

图(10)  /  表(2)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  54
  • PDF下载量:  80
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-05-06
  • 录用日期:  2023-05-09
  • 刊出日期:  2023-08-29

目录

/

返回文章
返回
x 关闭 永久关闭