高马赫数小尺度缝隙倒角热流测量

陈苏宇, 丁涛, 孔荣宗, 田润雨, 刘济春, 龚红明

陈苏宇,丁涛,孔荣宗,等. 高马赫数小尺度缝隙倒角热流测量[J]. 实验流体力学,2022,36(6):89-96. DOI: 10.11729/syltlx20210063
引用本文: 陈苏宇,丁涛,孔荣宗,等. 高马赫数小尺度缝隙倒角热流测量[J]. 实验流体力学,2022,36(6):89-96. DOI: 10.11729/syltlx20210063
CHEN S Y,DING T,KONG R Z,et al. Heat flux measurement of small scale gap corner at high Mach numbers[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):89-96.. DOI: 10.11729/syltlx20210063
Citation: CHEN S Y,DING T,KONG R Z,et al. Heat flux measurement of small scale gap corner at high Mach numbers[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):89-96.. DOI: 10.11729/syltlx20210063

高马赫数小尺度缝隙倒角热流测量

详细信息
    作者简介:

    陈苏宇: (1990-),男,湖北荆门人,助理研究员。研究方向:高超声速气动热及测试技术。通信地址:四川省绵阳市二环路南段6号15信箱502分箱(621000)。E-mail:chensy_hh@163.com

    通讯作者:

    龚红明: E-mail:gh_ming@163.com

  • 中图分类号: V211

Heat flux measurement of small scale gap corner at high Mach numbers

  • 摘要: 围绕再入式飞行器表面分布式隔热瓦的气动加热问题,针对流动强干扰特征且测量难度较大的小曲率半径缝隙倒角区域,采用Φ0.3 mm量级一体化同轴热电偶开展高马赫数来流条件下的热流测量,研究了缝隙倒角曲率半径、隔热瓦间台阶高度差、缝隙宽度、边界层流态、马赫数等因素对热环境的影响,通过分析热流时域曲线得到了瞬态热流的振荡特征。结果表明:台阶会显著增大热流;边界层流态的差异会引起缝隙倒角热流分布的显著变化;较高马赫数下的热流时域波动特征更温和,热流更低;部分状态存在瞬态负热流现象。 研究结果可为隔热瓦热防护设计和认识缝隙、台阶诱导的复杂流动机理提供参考。
    Abstract: To investigate the aero-heating environment of distributed insulation tiles on re-entry flight vehicles, integrated coaxial thermocouples of only 0.3 mm in diameter are utilized to measure the heat flux at high Mach numbers. Intense interacted flow may prevail in interested regions such as the gap corner with small curvature radius. This makes it difficult to measure the heat flux. The curvature radius of the gap corner, height difference between insulation tiles, gap width, boundary layer state and Mach number are investigated to determine the influence on the aero-heating environment. Temporal signals are analyzed to obtain fluctuation characteristics of the transient heat flux. Results show that the inverse step leads to obvious heat flux rise. Difference in boundary layer state means notable discrepancy in the heat flux distribution over the gap corner. Higher Mach number induces less fluctuated heat signals and moderate heat flux. Negative heat flux phenomena emerges under some conditions. Results are useful to TPS design of insulation tiles, and increase the knowledge of the mechanism of the complex flow induced by gaps and steps.
  • 图  1   隔热瓦测量区示意图

    Fig.  1   Schematic of measurement region of insulation tiles

    图  2   强制转捩粗糙带照片

    Fig.  2   Photo of roughness for forced transition

    图  3   一体化同轴热电偶及安装情况

    Fig.  3   Photo of integrated thermocouples and mounted condition

    图  4   default状态与强制转捩状态平板表面热流分布

    Fig.  4   Heat flux distributions of plate surface under default condition and forced transition condition

    图  5   不同因素对热流的影响(KT34)

    Fig.  5   Influence of different factors on heat flux (KT34)

    图  6   典型状态台阶倒角热流分布云图(KT34和KT8)

    Fig.  6   Spatial-temporal contour maps of heat flux under typical conditions for corner on inverse steps (KT34 and KT8)

    图  7   空间误差分布及所有状态误差分布直方图(KT34)

    Fig.  7   Spatial distribution of errors and histogram of errors for all experimental conditions (KT34)

    表  1   试验流场条件

    Table  1   Test flow conditions

    MaT0/Kp0/MPaRe/(m−1T/Kp/Pa
    12150010.32.2×10657.878
    16223720.27.6×10548.415
    下载: 导出CSV
  • [1]

    PALMER G, KONTINOS D, SHERMAN B. Surface heating effects of X-33 vehicle TPS panel bowing, steps, and gaps[C]//Proc of the 36th AIAA Aerospace Sciences Meet-ing and Exhibit. 1998. doi: 10.2514/6.1998-865

    [2]

    DARYABEIGI K, KNUTSON J, CUNNINGTON G. Heat transfer measurement and modeling in rigid high-temperature reusable surface insulation tiles[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011. doi: 10.2514/6.2011-345

    [3]

    VENKATAPATHY E, FELDMAN J, ELLERBY D, et al. NASA’s advanced TPS materials and technology develop-ment: multi-functional materials and systems for space exploration[R]. ARC-E-DAA-TN39418, 2017.

    [4]

    WILDER M C, PRABHU D K. Turbulent heat transfer experiments in hypersonic free flight on surfaces represen-tative of woven TPS materials[R]. NASA 20205011354, 2020.

    [5]

    HOLLIS B R. Boundary-Layer Transition and Surface Heating Measurements on a Hypersonic Inflatable Aerody-namic Decelerator with Simulated Flexible TPS[R]. AIAA 2017-3122, 2017. doi: 10.2514/6.2017-3122

    [6]

    DUNAVANT J C,THROCKMORTON D A. Aerodynamic heat transfer to RSI tile surfaces and gap intersections[J]. Journal of Spacecraft and Rockets,1974,11(6):437-440. doi: 10.2514/3.62098

    [7]

    FUJII K, INOUE Y. Aerodynamic heating measurement on ceramic tile region of Hypersonic Flight Experiment (HYFL-EX)[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998. doi: 10.2514/6.1998-605

    [8]

    GARIMELLA S V,SHOLLENBERGER K A,EIBECK P A,et al. Flow and heat transfer in simulated re-entry vehicle tile gaps[J]. Journal of Thermophysics and Heat Transfer,1993,7(4):644-650. doi: 10.2514/3.473

    [9] 唐贵明. 狭窄缝隙内的热流分布实验研究[J]. 流体力学实验与测量,2000,14(4):1-6. DOI: 10.3969/i.issn.1672-9897.2000.02.001

    TANG G M. Experimental investigation of heat transfer distributions in a deep gap[J]. Experiments and Measure-ments in Fluid Mechanics,2000,14(4):1-6. doi: 10.3969/i.issn.1672-9897.2000.02.001

    [10] 秦强,马建军. 陶瓷防热瓦间缝隙气动加热规律研究[J]. 装备环境工程,2013,10(5):42-46,51. DOI: 10.7643/issn.1672-9242.2013.05.009

    QIN Q,MA J J. Aerodynamic heating in gaps among ceramic insulating tiles array[J]. Equipment Environmental Engineering,2013,10(5):42-46,51. doi: 10.7643/issn.1672-9242.2013.05.009

    [11] 邱波. 高超声速飞行器横向缝隙内部涡旋结构及热环境数值模拟研究[D]. 绵阳: 中国空气动力研究与发展中心, 2015.

    QIU B. Numerical investigation for vortexes and aeroyna-dmic heating environment in transverse gaps on hypersonic vehicle[D]. Mianyang: China Aerodynamics Research and Development Center, 2015.

    [12] 黄国. 高超声速环境下缝隙热环境的数值模拟研究[D]. 北京: 北京交通大学, 2017.

    HUANG G. Numerical simulation for heating environment of gap in hypersonic flow[D]. Beijing: Beijing Jiaotong Univer-sity, 2017.

    [13] 黄杰,姚卫星,孔斌,等. 防热瓦式防护系统缝隙热控设计规律[J]. 南京航空航天大学学报,2019,51(3):366-373. DOI: 10.16356/j.1005?2615.2019.03.014

    HUANG J,YAO W X,KONG B,et al. Thermal control designing rules of gaps for tile thermal protection system[J]. Journal of Nanjing University of Aeronautics & Astronau-tics,2019,51(3):366-373. doi: 10.16356/j.1005?2615.2019.03.014

    [14] 靳旭红,黄飞,程晓丽,等. 稀薄流区高超声速飞行器表面缝隙流动结构及气动热环境的分子模拟[J]. 航空动力学报,2019,34(1):201-209. DOI: 10.13224/j.cnki.jasp.2019.01.023

    JIN X H,HUANG F,CHENG X L,et al. Monte Carlo simulation for the flow-field structure and aerodynamic heating due to cavities on hypersonic vehicle surfaces in the rarefied flow regime[J]. Journal of Aerospace Power,2019,34(1):201-209. doi: 10.13224/j.cnki.jasp.2019.01.023

    [15] 龚红明,陈景秋,李理,等. 湍流条件下防热瓦缝隙热环境特性实验研究[J]. 实验流体力学,2015,29(2):13-18,25. DOI: 10.11729/syltlx20140093

    GONG H M,CHEN J Q,LI L,et al. Experimental investigationon the aerodynamic heating to tile-to-tile gaps in tubulent bouandry layer[J]. Journal of Experiments in Fluid Mechanics,2015,29(2):13-18,25. doi: 10.11729/syltlx20140093

图(7)  /  表(1)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  169
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-16
  • 修回日期:  2021-07-15
  • 录用日期:  2021-08-06
  • 刊出日期:  2022-12-29

目录

    /

    返回文章
    返回
    x 关闭 永久关闭