基于在线质谱技术的复杂燃烧场诊断研究进展

李静, 杨栋, 厉梅, 侯可勇

李静, 杨栋, 厉梅, 等. 基于在线质谱技术的复杂燃烧场诊断研究进展[J]. 实验流体力学, 2023, 37(5): 18-33. DOI: 10.11729/syltlx20220145
引用本文: 李静, 杨栋, 厉梅, 等. 基于在线质谱技术的复杂燃烧场诊断研究进展[J]. 实验流体力学, 2023, 37(5): 18-33. DOI: 10.11729/syltlx20220145
LI J, YANG D, LI M, et al. Progress in complex combustion field diagnostics based on on-line mass spectrometry technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 18-33. DOI: 10.11729/syltlx20220145
Citation: LI J, YANG D, LI M, et al. Progress in complex combustion field diagnostics based on on-line mass spectrometry technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 18-33. DOI: 10.11729/syltlx20220145

基于在线质谱技术的复杂燃烧场诊断研究进展

详细信息
    作者简介:

    李静: (1999—),男,山东聊城人,博士研究生。研究方向:在线质谱燃烧诊断技术。通信地址:山东省青岛市即墨区鳌山卫街道滨海公园72号山东大学青岛校区环境研究院环境安全在线质谱技术与装备实验室(266237)。E-mail:202133018@mail.sdu.edu.cn

    通讯作者:

    侯可勇: E-mail:houky@sdu.edu.cn

  • 中图分类号: TK31

Progress in complex combustion field diagnostics based on on-line mass spectrometry technology

  • 摘要: 燃烧场通常是气−固−液三相耦合的复杂体系,其燃烧诊断结果可支撑提高燃烧效率和降低污染物排放的研究。为了使燃烧诊断结果更加精确,先进的检测方法和检测系统必不可少。在线质谱仪具有灵敏度高、分析速度快、检测范围广等优点,可用于高温、高压等严苛条件下的燃烧场诊断,能够获得更全面的诊断信息。本文对近年来在线质谱仪质量分析器、电离源和取样系统等关键技术的发展概况进行了总结,列举了在线质谱技术在燃烧场火焰产物组分浓度和火焰温度测量中的应用,对在线质谱技术在复杂燃烧场诊断方面面临的挑战和发展前景进行了分析。
    Abstract: The combustion field is usually a complex system of gas-solid-liquid triphase coupling, and the results obtained from combustion diagnostic can support the researches to improve combustion efficiency and reduce pollutant emissions. In order to make the measurement results more accurate, it is urgent to develop advanced detection methods and detection systems. After several years of development, on-line mass spectrometry has the advantages of high sensitivity, fast analysis speed and wide detection range. It can be used for combustion flow field diagnostics under severe conditions such as high temperature and pressure, and can obtain more comprehensive and sensitive diagnostic information. Firstly, this paper summarized the development of key technologies, e.g., analyzer, ionization source, and sampling systems for on-line mass spectrometry in recent years. Secondly, the applications of on-line mass spectrometry on the measurement of flame component concentration and flame temperature in combustion field were enumerated. On this basis, the challenges and development prospects of the on-line mass spectrometry in complex combustion field diagnostics were summarized, which could provide reference for the relevant researchers.
  • 超高速飞行器的飞行速度越来越高,大气层内飞行时间越来越长,大面积防热层必然面对更严酷的热环境。为确保生存能力,必须防止防热层被烧穿。为满足有效载荷要求,防热层又不能设计得过于保守。这使得超高速飞行器的防热设计(包括材料选择、材料匹配、热应力分析和整体结构设计等)变得更为困难。

    由于材料烧蚀理论复杂、烧蚀模拟难度大,飞行试验十分昂贵,要解决这些问题,防热材料的地面烧蚀试验是重要的研究手段。由于电弧加热器能提供高焓高速气流,并对真实防热材料进行烧蚀,所提供的烧蚀环境更接近再入飞行条件,从而较高超声速风洞和燃气流装置的试验结果更有意义。在电弧射流中,采用先进的试验技术对局部区的防热材料和结构进行烧蚀研究,有着其独到的、其他试验设备不能代替的重要作用。

    飞行器外部材料烧蚀会引起流场变化,流场变化又引起烧蚀参数分布的变化,再引起防热体局部烧蚀速度和内部温度分布的变化。这些变化引起了许多研究人员的关注。董维中等[1]通过数值求解三维化学非平衡N-S方程,研究了碳-碳烧蚀对再入体头部区域的温度和热流分布的影响。张威等[2]研究了定常烧蚀条件下的碳-酚醛球锥体烧蚀热解对流场特性的影响特点。邵纯等[3]采用数值模拟方法,研究了三维球头防热体烧蚀带来的效应,获得结构内部的温度场分布和烧蚀流场参数。

    电弧加热烧蚀作为一种重要的地面烧蚀研究手段,试验目标的实现与对试验流场的了解和设计密不可分。烧蚀试验过程中,模型外形变化或者其他因素导致流场改变会直接影响烧蚀参数,也引起了众多研究者的关注。NASA阿姆斯研究中心的Chen等[4-5]采用数值方法研究了防热材料端头模型烧蚀外形变化对烧蚀参数的影响。阿姆斯研究中心的Gken等[6]对60MW电弧干扰加热设备驻点烧蚀试验流场进行了计算分析,研究了模型烧蚀外形变化对流场和烧蚀参数的影响,并与烧蚀试验结果进行了对比。王臣等[7]对电弧加热器的流场进行数值模拟研究,研究了电弧射流及驻点区的流动特点。张友华[8]等研究了电弧超声速湍流导管烧蚀流场的稳定性,结果表明,材料烧蚀导致导管的截面积加大,会引起导管内烧蚀过程中的压力和静焓下降。罗跃等[9]计算分析了改变模型的气流迎角对电弧加热器超声速湍流平板烧蚀试验模型表面参数的影响规律。

    对于电弧烧蚀试验条件下的烧蚀外形,通过模拟计算很难准确获得,主要靠试验得到。本文根据平板模型的烧蚀外形变化,对试验中的电弧加热试验流场进行模拟分析,期望得到湍流平板烧蚀试验过程中的流场变化规律特点,并研究与平板试验件表面烧蚀速率相关的气动力、热参数的分布在烧蚀过程中的变化规律,以期为分析试验获得的材料烧蚀特性结果提供帮助。

    高速飞行器在再入大气层时,热防护材料的烧蚀是气流通过热交换、压力、剪切力和化学反应等对飞行器表面材料进行综合作用的结果,地面的烧蚀试验需再现这样的热环境。

    大面积防热层的烧蚀通常采用电弧加热器超声速湍流平板烧蚀试验技术(见图 1)。其原理[10-13]是:由电弧加热器产生的高温气流,经转接过渡段时形成层流边界层并在喷管喉道附近转捩为湍流边界层。在超声速矩形喷管型面壁出口处,与气流有一定迎角地放置平板模型,两者密接齐平无缝隙。模型上的边界层是喷管型面壁上边界层的自然延续,因此平板模型上得到充分发展的湍流边界层流动,而平板模型前缘斜激波造成的逆压梯度,提高了模型表面参数模拟范围。

    图  1  电弧湍流平板试验原理
    Fig.  1  Test schematic diagram of turbulence plate

    试验过程中,通常采用平板模型初始外形测试模型表面气动力热参数。随着烧蚀的进行,平板模型表面发生了变化,烧蚀时间越长,或者烧蚀的条件异常恶劣(比如压力特别高或者热流密度非常高),模型表面形状变化就越明显。外形发生变化后,流场会随之发生变化,从而导致模型表面局部烧蚀速度发生变化。在表面最大烧蚀量小于5mm情况下,可以忽略这种变化,如果产生的最大烧蚀量大于5mm(比如因烧蚀时间长或者材料抗烧蚀性能不好等情况所致),就有必要考虑流场变化对材料烧蚀速率的影响。通过考虑这些因素的变化,有利于对飞行器进行更精确的防热设计。

    本文采用商业软件FLUENT对电弧加热器湍流平板烧蚀试验的不同烧蚀外形下的流场进行模拟和分析。

    计算采用的控制方程为一般直角坐标系中无量纲可压缩二维N-S方程,湍流模型使用两方程RNG k-ε湍流模型。RNG理论提供了一个考虑低雷诺数流动粘性的解析公式,比标准k-ε模型在强流线弯曲、旋涡和旋转等方面有更好的表现,更适用于强逆压梯度的边界层流动、流动分离和二次流。

    基于有限体积法(控制容积法),采用二阶迎风格式对控制方程进行空间离散求解。

    根据电弧加热器超声速湍流平板试验原理建立计算域,如图 2所示。喷管内流区和射流外流区组成整个流体计算域,喷管为名义马赫数2.3的超声速矩形型面喷管,平板模型长度为0.2m。电弧加热器产生的高温高压气流经喷管内部型面加速后,高速喷射到大气环境中。在喷管出口安装平板模型,平板模型上缘与喷口的下壁面贴平,高温高速气流对其表面产生剧烈的加热作用。为了减小喷管出口射流对边界的影响,将与喷管出口临近的边界左移20倍特征长度的距离,并设置为压力远场条件,上下空间远场边界距离射流区60倍特征长度。喷管入口采用压力入口条件,出口采用压力出口条件,模型表面采用固定无滑移等温壁条件[9]。计算输入条件为:总温6000K,总压2MPa,模型与气流夹角固定为13°。

    图  2  计算域及边界条件
    Fig.  2  Computational domain and boundary conditions

    整个计算域采用四边形结构网格,网格物面正交并向物面和变化梯度较大的区域按指数规律加密。由于涉及模型表面附面层加热,近壁面的网格划分除了确保足够的网格数量和密度之外,根据采用的非平衡壁面处理方法,将壁面第一层无量纲网格距离控制在30~100之间。

    为验证计算方法,进行了初始外形下的湍流平板流场校测试验。试验在中国空气动力研究与发展中心(CARDC)的电弧加热设备上进行。图 3所示为安装在电弧加热器上的矩形喷管。试验方法及装置布置如图 1及前文所述。利用平板校测模型(见图 4)测量表面热流、压力分布。表面压力是在需要的位置,在法向方向开Φ1mm的测压孔,并连接至微型压力传感器进行测量[14-15]

    图  3  矩形喷管
    Fig.  3  Photo of rectangular nozzle
    图  4  校测模型
    Fig.  4  Calibration model

    测量热流密度的量热塞传感器与测试模型表面平齐,采取措施隔离量热塞与测试模型之间的传热。量热塞感受流场热流的瞬间是一个很短暂的过程,可以忽略量热塞侧向的传热,认为表面热流只向其法向方向进行一维热传导。根据一维热传导理论,表面热流密度可以近似为:

    (1)

    式中,qw为表面热流密度,W/m2; ρ为量热块的密度,kg/m3; cp为量热块的比热,J/(kg·℃); δ为量热块的厚度,m;T为量热块背面温度,℃;t为温升经历的时间,s。

    经标定,热流传感器的不确定度为5.8%,可以满足测量要求。电弧加热器点火前,校测模型处于流场外部,待电弧加热器运行稳定后,模型送进机构快速将校测模型送入到流场指定位置并开始测量,校测模型在高温流场中停留时间小于1s,获得数据后再由送进机构快速移出流场,测试结束。

    验证试验选用了某典型试验状态进行测试并与数值模拟结果进行比较。图 56显示了该状态下平板校测模型表面的压力和热流测试数据以及计算结果,这是平板模型初始状态下的情况。得到的平板表面压力和热流分布值采用了最大值进行归一化处理。从图 56中可以看出,计算值与实测值分布趋势吻合很好。最受关注的表面热流密度值的具体值偏差也在20%以内。说明采用该计算方法可以较好地模拟平板模型表面的流动情况。

    图  5  平板表面的压力分布
    Fig.  5  Pressure distribution
    图  6  平板表面的热流分布
    Fig.  6  Heat-fluxes distribution

    平板模型经过一段时间烧蚀后,表面会后退(见图 7),某试验件由初始外形变成了标记为A的外形;继续烧蚀一段时间,该试验件的表面外形又变为了标记为B的外形。从图 7中可以看出:A和B的外形轮廓很相似,但并不是均匀地往下推进;A外形变化到B外形的烧蚀量分布是前后小、中间大。

    图  7  平板模型的烧蚀轮廓
    Fig.  7  The ablation profile of the model

    为分析模型前后烧蚀量存在差异的原因,分别把A外形和B外形替代模型初始外形放到计算模型中进行计算。除了模型外形有改变之外,其他参数都保持不变。得到了初始外形、A外形和B外形情况下的流场静压云图,如图 8所示。

    图  8  流场静压云图
    Fig.  8  Static pressure of flow field

    图 8(a)可以看出,由于模型与气流存在初始迎角,斜激波在平板前缘处产生。从图 8(b)(c)可以看出,由于模型外形的变化,流场的波系出现了明显的后移。A外形和B外形产生的斜激波出现在靠后的位置,并且波系的形状发生了变化。从图 8的三张图可看出,流场中的高压力区依次往模型后部推移,A外形和B外形的流场高压区还分为了两个区。

    图 9为烧蚀试验过程中的照片。图 9(a)为烧蚀刚开始时的照片,可以看作模型初始外形下的流场,对应于计算结果的图 8(a)图 9(b)为烧蚀过程中某时刻的照片,对应A外形,即计算结果的图 8(b)图 9(c)为烧蚀试验结束前的照片,对应B外形,即计算结果的图 8(c)。这三张照片对比也可以看出流场的明显变化,图 9(b)(c)中斜激波出现在靠后的位置,并且波系的形状与图 9(a)相比发生了明显变化,其和计算模拟流场的图 8中的波系位置和形状是一致的,说明计算模拟的结果能够准确地反映实际情况。

    图  9  流场照片对比
    Fig.  9  Flow field photos

    图 1011分别为3种外形下模拟得到的模型表面压力和表面热流分布。红、绿、蓝线分别为初始外形、A外形和B外形的结果曲线。初始外形的结果,高热流和高压力区域在前0.08m以内;烧蚀发生一段时间后,外形变为A外形,模型的前部区域内压力和热流值都降低了。A外形的高参数区域在距前缘0.03~0.12m范围内,最高热流出现在距前缘0.055m处;而A外形的最大烧蚀量在距前缘0.04m处,该处在高热流区内,但并不是热流最高处。B外形的高参数区域在0.05~0.14m区间,最高热流出现在距前缘0.085m处;而B外形的最大烧蚀量在距前缘0.06m处,该处在高热流区内,也不是最高热流处。

    图  10  三种外形的模型中心压力分布
    Fig.  10  Center pressure distributions of three models
    图  11  三种外形的模型中心热流分布
    Fig.  11  Center heat flow distributions of three models

    烧蚀后,模型表面高参数区分布呈现为驼峰型。A外形在驼峰中的低热流比高热流低了约7%,B外形在驼峰中的低热流比高热流低了约15%。A外形和B外形表面热流的最高值比初始外形表面热流最高值增大了约15%。

    图 7中的烧蚀外形也可以看出,B外形烧蚀量最大值的位置比A外形的烧蚀量最大值的位置往后推移了约0.02m,这说明烧蚀过程中,局部烧蚀速度是变化的。最大热流值出现在烧蚀量最大值位置的后方,也就是B外形出现最大热流值的位置比A外形最大热流值的位置要靠后,而初始外形的最大热流值在模型的前缘。如果烧蚀量最大的位置处于初始外形的高热量区内,在烧蚀过程中该区域始终遭受了较高热流(不一定始终是最高热流),用该位置的烧蚀量计算烧蚀速率是可行的。

    在烧蚀过程中,模型表面的最高热流值也会增大,根据前面的计算结果,烧蚀过程中模型表面冷壁热流最大约增加15%。最大热流值增大的主要原因是烧蚀后的表面呈现前低后高的分布,类似增大了模型表面气流迎角的情况[9]。迎角越大,平板模型对超声速气流的压缩越大,模型表面压力会更高,相应位置的热流密度也会增加。

    简要概括本文工作,可得到以下几点结论:

    (1) 通过不同模型外形下的流场数值模拟,较准确地反映了流动的实际情况,可为试验结果分析提供帮助。

    (2) 在电弧超声速湍流平板烧蚀时,平板材料烧蚀量最大的位置是从前往后移动的。如果烧蚀量最大的位置处于初始外形的高热量区,在烧蚀过程中该区域始终遭受较高热流,可以使用该位置的烧蚀量计算烧蚀速率。

    (3) 随着烧蚀的进行,不考虑表面粗糙度增加的因素,模型表面的最大冷壁热流会增大,因为模型表面相对于气流的迎角变大了。

  • 图  1   各种类型质量分析器的结构示意图

    Fig.  1   Structure diagrams of different types of analyzers

    图  2   多次反射飞行时间质量分析器的结构示意图

    Fig.  2   Structure diagrams of multiple reflection time of flight mass analyzers

    图  3   电子轰击电离源的原理示意图[55]

    Fig.  3   Schematic diagram of the electron ionization source[55]

    图  4   在线质谱仪所用的光源

    Fig.  4   Light sources for on-line mass spectrometry

    图  5   基于VUV−Kr灯的高性能电离源技术

    Fig.  5   High performance ionization source technologies based on VUV-Kr lamp

    图  6   石英取样喷嘴的实物图和结构示意图

    Fig.  6   Photograph and structure diagram of the quartz sampling nozzle

    图  7   PVC在共振增强多光子电离源和光电子电离源下的质谱图

    Fig.  7   Mass spectrum of PVC in a resonance enhanced multiphoton ionization source and photoelectron ionization source

    图  8   典型燃料下的火焰的光电离质谱图

    Fig.  8   Photoionization mass spectrum of flames under typical fuel

  • [1] 刘兵, 董丰硕, 刘瑞东, 等. 真空紫外光电离质谱技术进展及其在快速分析中的应用[J]. 分析测试学报, 2021, 40(2): 208–214. DOI: 10.3969/j.issn.1004-4957.2021.02.006

    LIU B, DONG F S, LIU R D, et al. Progress of vacuum ultraviolet photon ionization mass spectrometry and its application in on-line analysis[J]. Journal of Instrumental Analysis, 2021, 40(2): 208–214. doi: 10.3969/j.issn.1004-4957.2021.02.006

    [2]

    DANG M, LIU R D, DONG F S, et al. Vacuum ultraviolet photoionization on-line mass spectrometry: instrumentation developments and applications[J]. Trac-Trends in Analytical Chemistry, 2022, 149: 116542. doi: 10.1016/j.trac.2022.116542

    [3]

    DONG F S, LI H, LIU B, et al. Protonated acetone ion chemical ionization time-of-flight mass spectrometry for real-time measurement of atmospheric ammonia[J]. Journal of Environmental Sciences, 2022, 114: 66–74. doi: 10.1016/j.jes.2021.07.023

    [4]

    ZHU S N, YAN C, ZHENG J, et al. Observation and source apportionment of atmospheric alkaline gases in urban Beijing[J]. Environmental Science & Technology, 2022, 56(24): 17545–17555. doi: 10.1021/acs.est.2c03584.

    [5]

    COOL T A, MCILROY A, QI F, et al. Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source[J]. Review of Scientific Instruments, 2005, 76(9): 094102. doi: 10.1063/1.2010307

    [6]

    LI Y, ZHANG L, TIAN Z, et al. Experimental study of a fuel-rich premixed toluene flame at low pressure[J]. Energy & Fuels, 2009, 23(3): 1473–1485. doi: 10.1021/ef800902t

    [7]

    WANG S, WANG W M, LI H, et al. Rapid on-site detection of illegal drugs in complex matrix by thermal desorption acetone-assisted photoionization miniature ion trap mass spectrometer[J]. Analytical Chemistry, 2019, 91(6): 3845–3851. doi: 10.1021/acs.analchem.8b04168

    [8]

    CHEN W D, HOU K Y, HUA L, et al. Dopant-assisted reactive low temperature plasma probe for sensitive and specific detection of explosives[J]. Analyst, 2015, 140(17): 6025–6030. doi: 10.1039/c5an00816f

    [9]

    LIU B, TANG W X, LI H, et al. Point-of-care detection of sevoflurane anesthetics in exhaled breath using a miniature TOFMS for diagnosis of postoperative agitation symptoms in children[J]. Analyst, 2022, 147(11): 2484–2493. doi: 10.1039/d2an00479h

    [10]

    PRIETO M C, KOVTOUN V V, COTTER R J. Miniaturized linear time-of-flight mass spectrometer with pulsed extraction[J]. Journal of Mass Spectrometry, 2002, 37(11): 1158–1162. doi: 10.1002/jms.386

    [11] 周丽娟. 小型飞行时间质谱的开发及射频增强化学电离源的研制[D]. 长春: 吉林大学, 2018.

    ZHOU L J. Development of miniature flight time mass spectrometry and radiofrequency field enhanced chemical ionization[D]. Changchun: Jilin University, 2018.

    [12] 齐雅晨. 用于飞行时间质谱的膜进样及射频放电电离源的研究与应用[D]. 长春: 吉林大学, 2016.

    QI Y C. Development and application of membrane inlet time-of-flight mass spectrometry and radio frequency discharge ion source[D]. Changchun: Jilin University, 2016.

    [13] 李金旭. 便携式飞行时间质谱的研究及其在挥发性硫化物测量中的应用[D]. 长春: 吉林大学, 2015.

    LI J X. Development of a portable time-of-flight mass spectrometry and its application in the measurement of volatile sulfide[D]. Changchun: Jilin University, 2015.

    [14] 韩笑笑. 便携式TOFMS中VOCs快速富集冷阱研制及其应用研究[D]. 西安: 西安石油大学, 2018.

    H X X. Development and application of VOCs rapid enrichment cold trap in portable TOFMS[D]. Xi’an: Xi’an Shiyou University, 2018.

    [15] 李庆运. 光电离飞行时间质谱仪研制及其用于催化过程监测[D]. 长春: 吉林大学, 2016.

    LI Q Y. Development of photoionization time-of-flight mass spectrometer and its application for catalytic reaction monitoring[D]. Changchun: Jilin University, 2016.

    [16]

    GROSS J H. Mass Spectrometry[M]. Berlin: Springer Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-10711-5.

    [17] 黄灿. 核心机理中C4组分的燃烧反应动力学机理研究[D]. 北京: 清华大学, 2019.

    HUANG C. Combustion kinetics of the C4 foundational fuel chemistry[D]. Beijing: Tsinghua University, 2019.

    [18] 黄燕. 氮气掺混的乙烯层流同轴扩散火焰温度场与组分浓度场测量[D]. 上海: 上海交通大学, 2018.

    HUANG Y. Two dimensional temperature and carbon dioxide concentration profiles of nitrogen added ethylene co-flow diffusion flames measured by mid-infrared direct absorption spectroscopy[D]. Shanghai: Shanghai Jiao Tong University, 2018.

    [19] 洪延姬, 宋俊玲, 饶伟, 等. 激光吸收光谱断层诊断技术测量燃烧流场研究进展[J]. 实验流体力学, 2018, 32(1): 43–54. DOI: 10.11729/syltlx20160177

    HONG Y J, SONG J L, RAO W, et al. Progress on tunable diode laser absorption tomography technique for combustion diagnotics[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 43–54. doi: 10.11729/syltlx20160177

    [20] 洪延姬. 燃烧场吸收光谱诊断技术研究进展[J]. 实验流体力学, 2014, 28(3): 12–25. DOI: 10.11729/syltlx2014ty02

    HONG Y J. Progress in absorption spectroscopy diagnosis techniques for combustion flowfields[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3): 12–25. doi: 10.11729/syltlx2014ty02

    [21] 娄春, 张鲁栋, 蒲旸, 等. 基于自发辐射分析的被动式燃烧诊断技术研究进展[J]. 实验流体力学, 2021, 35(1): 1–17. DOI: 10.11729/syltlx20200063

    LOU C, ZHANG L D, PU Y, et al. Research advances in passive techniques for combustion diagnostics based on analysis of spontaneous emission radiation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 1–17. doi: 10.11729/syltlx20200063

    [22] 张大源, 李博, 高强, 等. 飞秒激光光谱技术在燃烧领域的应用[J]. 实验流体力学, 2018, 32(1): 1–10. DOI: 10.11729/syltlx20170141

    ZHANG D Y, LI B, GAO Q, et al. Application of femtosecond-laser spectrum technology in combustion field[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 1–10. doi: 10.11729/syltlx20170141

    [23] 刘训臣, 李玉阳, 周忠岳, 等. 光谱法和取样分析法在燃烧诊断研究中的应用[J]. 实验流体力学, 2016, 30(1): 43–54, 67. DOI: 10.11729/syltlx20150138

    LIU X C, LI Y Y, ZHOU Z Y, et al. Applications of laser spectroscopy and mass spectrometry in combustion diagnostics[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 43–54, 67. doi: 10.11729/syltlx20150138

    [24] 胡志云, 叶景峰, 张振荣, 等. 航空发动机地面试验激光燃烧诊断技术研究进展[J]. 实验流体力学, 2018, 32(1): 33–42. DOI: 10.11729/syltlx20170135

    HU Z Y, YE J F, ZHANG Z R, et al. Development of laser combustion diagnostic techniques for ground aero-engine testing[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 33–42. doi: 10.11729/syltlx20170135

    [25] 赵龙. 柴油类燃料若干典型分子结构的燃烧反应动力学研究[D]. 合肥: 中国科学技术大学, 2016.

    ZHAO L. Kinetic studies on several typical molecular structures of diesel and biodiesel fuels[D]. Heifei: University of Science and Technology of China, 2016.

    [26] 卫立夏. 几种C3含氧化合物的真空紫外光电离及燃烧研究[D]. 合肥: 中国科学技术大学, 2006.

    WEI L X. Studies on VUV photoionization and combustion of some C3 oxygen-contained compounds[D]. Heifei: University of Science and Technology of China, 2006.

    [27] 赵高升. 新型常压复合等离子体电离源-小型离子阱质谱仪的研发与应用[D]. 杭州: 浙江大学, 2022.

    ZHAO G S. Development and application of a noval atmospheric composite plasma ion source-miniature ion trap mass spectrometer[D]. Hangzhou: Zhejiang University, 2022.

    [28] 刘兵. 便携式飞行时间质谱在现场快速分析中的应用[D]. 青岛: 山东大学, 2022.

    LIU B. Application of miniature time-of-flight mass spectrometer in on-line analysis[D]. Qingdao: Shandong University, 2022.

    [29] 董丰硕. 化学电离飞行时间质谱实时检测氨气和有机胺的研究与应用[D]. 青岛: 山东大学, 2022.

    DONG F S. Development and applications of chemical ionization time-of-flight spectrometry for real-time detection of ammonia and organic amines[D]. Qingdao: Shandong University, 2022.

    [30] 温作赢. 真空紫外光电离飞行时间质谱仪研制及其大气化学应用[D]. 合肥: 中国科学技术大学, 2020.

    WEN Z Y. Development of VUV photoionization time of flight mass spectrometer and its applications in atmospheric chemistry[D]. Heifei: University of Science and Technology of China, 2020.

    [31] 李庆运. 飞行时间质谱光电离源的研制及其应用[D]. 长春: 吉林大学, 2019.

    LI Q Y. The development of photoionization sources for time-of-flight mass spectrometry and its application[D]. Changchun: Jilin University, 2019.

    [32] 方向, 覃莉莉, 白岗. 四极杆质量分析器的研究现状及进展[J]. 质谱学报, 2005(4): 234–242.

    FANG X, Q L L, BAI G. An introduction to quadrupole mass filter[J]. Journal of Chinese Mass Spectrometry Society, 2005(4): 234–242.

    [33]

    BRUNNÉE C. The ideal mass analyzer: fact or fiction?[J]. International Journal of Mass Spectrometry and Ion Processes, 1987, 76(2): 125–237. doi: 10.1016/0168-1176(87)80030-7

    [34]

    SNYDER D T, PULLIAM C J, OUYANG Z, et al. Miniature and fieldable mass spectrometers: recent advances[J]. Analytical Chemistry, 2016, 88(1): 2–29. doi: 10.1021/acs.analchem.5b03070

    [35]

    ZUBAREV R A, MAKAROV A. Orbitrap mass spectrometry[J]. Analytical Chemistry, 2013, 85(11): 5288–5296. doi: 10.1021/ac4001223

    [36]

    SECCOMBE D P, REDDISH T J. Theoretical study of space focusing in linear time-of-flight mass spectrometers[J]. Review of Scientific Instruments, 2001, 72(2): 1330–1338. doi: 10.1063/1.1336824

    [37]

    SARUGAKU S, ARAKAWA M, TERASAKI A. Space focusing extensively spread ions in time-of-flight mass spectrometry by nonlinear ion acceleration[J]. International Journal of Mass Spectrometry, 2017, 414: 65–69. doi: 10.1016/j.ijms.2017.01.003

    [38]

    WANG T, CHU C, HUNG H, et al. Design parameters of dual-stage ion reflectrons[J]. Review of Scientific Instruments, 1994, 65(5): 1585–1589. doi: 10.1063/1.1144896

    [39]

    MAMYRIN B A, KARATAEV V I, SHMIKK D V, et al. The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution[J]. Journal of Experimental and Theoretical Physics, 1973, 37(1): 45.

    [40]

    SUGIYAMA E, HARA A, UEMURA K. A quantitative analysis of serum sulfatide by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with delayed ion extraction[J]. Analytical Biochemistry, 1999, 274(1): 90–97. doi: 10.1006/abio.1999.4245

    [41]

    WANG B H, HOPKINS C E, BELENKY A B, et al. Sequencing of modified oligonucleotides using in-source fragmentation and delayed pulsed ion extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1997, 169-170: 331–350. doi: 10.1016/S0168-1176(97)00232-2

    [42]

    MOWAT I A, DONOVAN R J, MAIER R R J. Enhanced cationization of polymers using delayed ion extraction with matrix-assisted laser desorption/ionization[J]. Rapid Communications in Mass Spectrometry, 1997, 11(1): 89–98. doi: 10.1002/(SICI)1097-0231(19970115)11:1<89::AID-RCM810>3.0.CO;2-G

    [43]

    GUILHAUS M, SELBY D, MLYNSKI V. Orthogonal acceleration time-of-flight mass spectrometry[J]. Mass Spectrometry Reviews, 2000, 19(2): 65–107. doi: 10.1002/(SICI)1098-2787(2000)19:2<65::AID-MAS1>3.0.CO;2-E

    [44]

    YILDIRIM M, SISE O, DOGAN M, et al. Designing multi-field linear time-of-flight mass spectrometers with higher-order space focusing[J]. International Journal of Mass Spectrometry, 2010, 291(1): 1–12. doi: 10.1016/j.ijms.2009.12.014

    [45]

    TIAN Y L, WANG Y S, WANG J Y, et al. Designing a multi-reflection time-of-flight mass analyzer for LPT[J]. International Journal of Mass Spectrometry, 2016, 408: 28–32. doi: 10.1016/j.ijms.2016.08.013

    [46]

    WILEY W C, Mclaren I H. Time-of-flight mass spectrometer with improved resolution[J]. Review of Scientific Instruments, 1955, 26(12): 1150–1157. doi: 10.1063/1.1715212

    [47]

    DODONOV A F, KOZLOVSKI V I, SOULIMENKOV I V, et al. High-resolution electrospray ionization orthogonal-injection time-of-flight mass spectrometer[J]. European Journal of Mass Spectrometry, 2000, 6(6): 481–490. doi: 10.1255/ejms.378

    [48]

    TOYODA M, ISHIHARA M, YAMAGUCHI S, et al. Construction of a new multi-turn time-of-flight mass spectrometer[J]. Journal of Mass Spectrometry, 2000, 35(2): 163–167. doi: 10.1002/(SICI)1096-9888(200002)35:2<163::AID-JMS924>3.0.CO;2-G

    [49]

    TOYODA M, OKUMURA D, ISHIHARA M, et al. Multi-turn time-of-flight mass spectrometers with electrostatic sectors[J]. Journal of Mass Spectrometry, 2003, 38(11): 1125–1142. doi: 10.1002/jms.546

    [50]

    SATOH T, TSUNO H, IWANAGA M, et al. The design and characteristic features of a new time-of-flight mass spectrometer with a spiral ion trajectory[J]. Journal of the American Society for Mass Spectrometry, 2005, 16(12): 1969–1975. doi: 10.1016/j.jasms.2005.08.005

    [51]

    SATOH T, TSUNO H, IWANAGA M, et al. A new spiral time-of-flight mass spectrometer for high mass analysis[J]. Journal of the Mass Spectrometry Society of Japan, 2006, 54(1): 11–17. doi: 10.5702/massspec.54.11

    [52]

    WOLLNIK H, CASARES A. An energy-isochronous multi-pass time-of-flight mass spectrometer consisting of two coaxial electrostatic mirrors[J]. International Journal of Mass Spectrometry, 2003, 227(2): 217–222. doi: 10.1016/S1387-3806(03)00127-1

    [53]

    DICKEL T, PLASS W R, BECKER A, et al. A high-performance multiple-reflection time-of-flight mass spectrometer and isobar separator for the research with exotic nuclei[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 777: 172–188. doi: 10.1016/j.nima.2014.12.094

    [54]

    VERENTCHIKOV A N, YAVOR M I, HASIN Y I, et al. Multireflection planar time-of-flight mass analyzer. I: an analyzer for a parallel tandem spectrometer[J]. Technical Physics, 2005, 50(1): 73–81. doi: 10.1134/1.1854827

    [55] 李函蔚. 质谱光电离/光致化学电离源研究及 VOCs 在线检测应用[D]. 长春: 吉林大学, 2023.

    LI H W. The Development of Mass Spectrometry Photoionization/Photochemical Ionization Sources and Its Applications for Online VOCs Analysis [D]. Changchun: Jilin University, 2023.

    [56]

    NIER A O. Some reflections on the early days of mass spectrometry at the university of minnesota[J]. International Journal of Mass Spectrometry and Ion Processes, 1990, 100: 1–13. doi: 10.1016/0168-1176(90)85063-8

    [57]

    STEIN S E, HELLER D N. On the risk of false positive identification using multiple ion monitoring in qualitative mass spectrometry: large-scale intercomparisons with a comprehensive mass spectral library[J]. Journal of The American Society for Mass Spectrometry, 2006, 17(6): 823–835. doi: 10.1016/j.jasms.2006.02.021

    [58]

    STEIN S E, PIERRE A, LIAS S G. Comparative evaluations of mass spectral databases[J]. Journal of the American Society for Mass Spectrometry, 1991, 2(5): 441–443. doi: 10.1016/1044-0305(91)85012-U

    [59]

    MÜHLBERGER F, ZIMMERMANN R, KETTRUP A. A mobile mass spectrometer for comprehensive on-line analysis of trace and bulk components of complex gas mixtures: parallel application of the laser-based ionization methods VUV single-photon ionization, resonant multiphoton ionization, and laser-induced electron impact ionization[J]. Analytical Chemistry, 2001, 73(15): 3590–3604. doi: 10.1021/ac010023b

    [60]

    SHI Y J, LIPSON R H. An overview of organic molecule soft ionization using vacuum ultraviolet laser radiation[J]. Canadian Journal of Chemistry, 2005, 83(11): 1891–1902. doi: 10.1139/v05-193

    [61]

    MÜHLBERGER F, WIESER J, ULRICH A, et al. Single photon ionization (SPI) via incoherent VUV-excimer light: robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis[J]. Analytical Chemistry, 2002, 74(15): 3790–3801. doi: 10.1021/ac0200825

    [62] 温作赢, 顾学军, 林晓晓, 等. 真空紫外光电离质谱及其在大气化学中的应用研究[J]. 质谱学报, 2023, 44(2): 181–196. DOI: 10.7538/zpxb.2022.0189

    WEN Z Y, GU X J, LIN X X, et al. acuum ultraviolet photoionization mass spectrometry and its wide applications in atmospheric chemistry[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(2): 181–196. doi: 10.7538/zpxb.2022.0189

    [63]

    YAP Y K, INAGAKI M, NAKAJIMA S, et al. High-power fourth-and fifth-harmonic generation of a Nd: YAG laser by means of a CsLiB6O10[J]. Optics Letters, 1996, 21(17): 1348–1350. doi: 10.1364/OL.21.001348

    [64] 李奇峰, 汪华, 石勇, 等. 双光子共振四波差频产生的真空紫外激光特性研究[J]. 化学物理学报, 2004(3): 333–338.

    LI Q F, WANG H, SHI Y, et al. Characteristic study on VUV generated by two-photon resonant four wave mxing in xenon[J]. Chinese Journal of Chemical Physics, 2004(3): 333–338.

    [65]

    GEHM C, STREIBEL T, EHLERT S, et al. Development and optimization of an external-membrane introduction photoionization mass spectrometer for the fast analysis of (polycyclic) aromatic compounds in environmental and process waters[J]. Analytical Chemistry, 2019, 91(24): 15547–15554. doi: 10.1021/acs.analchem.9b03480

    [66] 贾良元, 周忠岳, 李玉阳, 等. 基于同步辐射光电离质谱的燃烧与能源研究新方法[J]. 中国科学: 化学, 2013, 43(12): 1686–1699. doi: 10.1360/032013-246
    [67] 潘洋, 张泰昌, 齐飞. 同步辐射单光子电离技术在燃烧和其他研究中的应用[C]//长三角光子科技创新论坛暨2006年安徽博士科技论坛论文集. 2006: 554-558.
    [68] 齐飞. 同步辐射真空紫外单光子电离技术及其应用[J]. 中国科学技术大学学报, 2007(Z1): 414–425.

    QI F. Synchrotron radiation VUV single-photon ionization technique and its applications[J]. Journal of University of Science and Technology of China, 2007(Z1): 414–425.

    [69] 北京同步辐射装置介绍[J]. 现代物理知识, 2008(2): 41.
    [70] 吴旭, 田顺强, 张文志. 上海同步辐射光源工作点稳定性研究[J]. 原子能科学技术, 2022, 56(9): 1815–1820. DOI: 10.7538/yzk.2022.youxian.0349

    WU X, TIAN S Q, ZHANG W Z. Study on tune stability of Shanghai synchrotron radiation facility[J]. Atomic Energy Science and Technology, 2022, 56(9): 1815–1820. doi: 10.7538/yzk.2022.youxian.0349

    [71] 张国斌, 胡胜生, 封东来. 合肥光源[J]. 现代物理知识, 2020, 32(03): 3–9. doi: 10.13405/j.cnki.xdwz2020.03.002
    [72] 周忠岳, 杨玖重, 潘洋, 等. 同步辐射真空紫外光电离质谱在燃烧和催化研究中的应用进展[J]. 质谱学报, 2021, 42(5): 598–608. DOI: 10.7538/zpxb.2021.0149

    ZHOU Z Y, YANG J Z, PAN Y, et al. Recent applications of synchrotron vacuum ultraviolet photoionization mass spectrometry in combustion and catalysis research[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 598–608. doi: 10.7538/zpxb.2021.0149

    [73]

    NORMILE D. Unique free electron laser laboratory opens in China[J]. Science, 2017, 355(6322): 235–235. doi: 10.1126/science.355.6322.235

    [74] 余永, 李钦明, 杨家岳, 等. 大连极紫外相干光源[J]. 中国激光, 2019, 46(1): 43–50. DOI: 10.3788/CJL201946.0100005

    YU Y, LI Q M, YANG J Y, et al. Dalian extreme ultraviolet coherent light source[J]. Chinese Journal of Lasers, 2019, 46(1): 43–50. doi: 10.3788/CJL201946.0100005

    [75]

    LI C, WEI S, DU X, et al. On-line spectral diagnostic system for Dalian Coherent Light Source[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 783: 65–67. doi: 10.1016/j.nima.2015.01.089

    [76] 谭国斌, 高伟, 黄正旭, 等. 真空紫外灯单光子电离源飞行时间质谱仪的研制[J]. 分析化学, 2011, 39(10): 1470–1475. doi: 10.3724/SP.J.1096.2011.01470
    [77] 王健, 胡永华, 田振峰, 等. 真空紫外灯电离源飞行时间质谱仪的研制及应用[J]. 分析试验室, 2016, 35(10): 1236–1240. doi: 10.13595/j.cnki.issn1000-0720.2016.0279
    [78] 赵振堂, 戴志敏, 张文志, 等. 上海粒子加速器大科学装置概述[J]. 复旦学报(自然科学版), 2023, 62(03): 293–309.
    [79] 李庆运, 花磊, 蒋吉春, 等. 用于催化过程在线监测的高分辨光电离飞行时间质谱仪的研制和应用[J]. 分析化学, 2015, 43(10): 1531–1537. doi: 10.11895/j.issn.0253-3820.150454
    [80] 陈文东, 侯可勇, 陈平, 等. 单光子/光电子在线质谱实时分析聚氯乙烯热分解/燃烧产物[J]. 环境科学, 2013, 34(1): 34–38. DOI: 10.13227/j.hjkx.2013.01.018

    CHEN W D, HOU K Y, CHEN P, et al. Real-time analysis of polyvinyl chloride thermal decomposition/combustion products with single photon ionization/photoelectron ionization online mass spectrometer[J]. Environmental Science, 2013, 34(1): 34–38. doi: 10.13227/j.hjkx.2013.01.018

    [81] 谢园园, 花磊, 侯可勇, 等. 单光子电离质谱法在线分析牙膏中的香精物质[J]. 分析化学, 2012, 40(12): 1883–1889. doi: 10.3724/SP.J.1096.2012.20542
    [82] 谢园园, 花磊, 陈平, 等. 气相色谱-单光子电离飞行时间质谱的联用及在柴油组分表征中的应用[J]. 色谱, 2015, 33(2): 188–194. DOI: 10.3724/SP.J.1123.2014.10028

    XIE Y Y, HUA L, CHEN P, et al. Coupling of gas chromatography with single photon ionization time-of-flight mass spectrometry and its application to characterization of compounds in diesel[J]. Chinese Journal of Chromatography, 2015, 33(2): 188–194. doi: 10.3724/SP.J.1123.2014.10028

    [83]

    WU Q, HUA L, HOU K, et al. Vacuum ultraviolet lamp based magnetic field enhanced photoelectron ionization and single photon ionization source for online time-of-flight mass spectrometry[J]. Analytical Chemistry, 2011, 83(23): 8992–8998. doi: 10.1021/ac201791n

    [84]

    HUA L, WU Q, HOU K, et al. Single photon ionization and chemical ionization combined ion source based on a vacuum ultraviolet lamp for orthogonal acceleration time-of-flight mass spectrometry[J]. Analytical Chemistry, 2011, 83(13): 5309–5316. doi: 10.1021/ac200742r

    [85]

    HUA L, HOU K, CHEN P, et al. Realization of in-source collision-induced dissociation in single-photon ionization time-of-flight mass spectrometry and its application for differentiation of isobaric compounds[J]. Analytical Chemistry, 2015, 87(4): 2427–2433. doi: 10.1021/ac5043768

    [86]

    CHEN P, HOU K Y, HUA L, et al. Quasi-trapping chemical ionization source based on a commercial VUV lamp for time-of-flight mass spectrometry[J]. Analytical Chemistry, 2014, 86(3): 1332–1336. doi: 10.1021/ac403132k

    [87] 齐雅晨, 刘巍, 蒋吉春, 等. 无窗射频放电单光子电离质谱在线监测氯苯的研究[J]. 质谱学报, 2015, 36(6): 506–512. DOI: 10.7538/zpxb.2015.36.06.0506

    QI Y C, LIU W, JIANG J C, et al. On-line analysis of cholrobenzenes by windowless RF discharge signal photon ionization mass spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(6): 506–512. doi: 10.7538/zpxb.2015.36.06.0506

    [88] 张晓愿. 两种典型醇类燃料燃烧的实验和模型研究[D]. 合肥: 中国科学技术大学, 2016.

    ZHANG X Y. Experimental and kinetic modeling study of two typical alcohol fuels combustion[D]. Heifei: University of Science and Technology of China, 2016.

    [89] 李天宇. 热解气氛下若干关键芳烃生成的燃料协同效应研究[D]. 合肥: 中国科学技术大学, 2017.

    LI T Y. Study of synergistic effect during the formation of some key aromatic hydrocarbons in pyrolysis atmosphere[D]. Heifei: University of Science and Technology of China, 2017.

    [90] 孙雯禹. 几种新型含氧燃料的燃烧反应动力学研究[D]. 北京: 清华大学, 2018.

    SUN W Y. Investigations into the combustion kinetics of several novel oxygenated fuels[D]. Beijing: Tsinghua University, 2018.

    [91]

    A. TAATJES C, HANSEN N, L. OSBORN D, et al. “Imaging” combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry[J]. Physical Chemistry Chemical Physics, 2008, 10(1): 20–34. doi: 10.1039/B713460F

    [92]

    LI W, WANG G, LI Y, et al. Experimental and kinetic modeling investigation on pyrolysis and combustion of n-butane and i-butane at various pressures[J]. Combustion and Flame, 2018, 191: 126–141. doi: 10.1016/j.combustflame.2018.01.002

    [93]

    MOSHAMMER K, JASPER A W, POPOLAN-VAIDA D M, et al. Quantification of the keto-hydroperoxide (HOOCH2OCHO) and other elusive intermediates during low-temperature oxidation of dimethyl ether[J]. The Journal of Physical Chemistry A, 2016, 120(40): 7890–7901. doi: 10.1021/acs.jpca.6b06634

    [94]

    HANSEN N, COOL T A, WESTMORELAND P R, et al. Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry[J]. Progress in Energy and Combustion Science, 2009, 35(2): 168–191. doi: 10.1016/j.pecs.2008.10.001

    [95] 闫博, 李猛, 陈力, 等. 基于滤波瑞利散射技术的带压燃烧场温度测量实验研究[J]. 实验流体力学, 2019, 33(4): 27–32. DOI: 10.11729/syltlx20180168

    YAN B, LI M, CHEN L, et al. Experimental study on temperature measurement of high pressure combustion based on filtered rayleigh scattering technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 27–32. doi: 10.11729/syltlx20180168

    [96] 刘高恩, 王华芳, 吕品, 等. 飞机发动机排气污染物的测量[J]. 航空动力学报, 2003(3): 348–352. DOI: 10.13224/j.cnki.jasp.2003.03.008

    LIU G E, WANG H F, LV P, et al. Gas turbine engine emissions measurement[J]. Journal of Aerospace Power, 2003(3): 348–352. doi: 10.13224/j.cnki.jasp.2003.03.008

    [97] 王明瑞, 肖阳, 韩冰, 等. 航空燃气涡轮发动机燃气分析测试及计算方法[J]. 航空动力学报, 2015, 30(11): 2568–2574. DOI: 10.13224/j.cnki.jasp.2015.11.002

    WANG M R, XIAO Y, HAN B, et al. Gas analysis test and calculation method of aeroengine[J]. Journal of Aerospace Power, 2015, 30(11): 2568–2574. doi: 10.13224/j.cnki.jasp.2015.11.002

    [98] 李乐, 索建秦, 于涵, 等. 燃气分析系统优化设计及应用研究[J]. 西北工业大学学报, 2020, 38(1): 104–113. DOI: 10.1051/jnwpu/20203810104

    LI L, SUO J Q, YU H. Optimization design and application research of gas analysis system[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 104–113. doi: 10.1051/jnwpu/20203810104

    [99]

    ADAM T, STREIBEL T, MITSCHKE S, et al. Application of time-of-flight mass spectrometry with laser-based photoionization methods for analytical pyrolysis of PVC and tobacco[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1): 454–464. doi: 10.1016/j.jaap.2004.11.021

    [100]

    ZHOU Z Y, WANG Y, TANG X F, et al. A new apparatus for study of pressure-dependent laminar premixed flames with vacuum ultraviolet photoionization mass spectrometry[J]. Review of Scientific Instruments, 2013, 84(1): 014101. doi: 10.1063/1.4773541

    [101]

    YANG B, OSSWALD P, LI Y, et al. Identification of combustion intermediates in isomeric fuel-rich premixed butanol-oxygen flames at low pressure[J]. Combustion and Flame, 2007, 148(4): 198–209. doi: 10.1016/j.combustflame.2006.12.001

    [102]

    YANG R, YANG B, HUANG C Q, et al. VUV photoionization study of the allyl radical from premixed gasoline/oxygen flame[J]. Chinese Journal of Chemical Physics, 2006(01): 25–28 + 93.

    [103]

    LI Y, QI F. Recent applications of synchrotron VUV photoionization mass spectrometry: insight into combustion chemistry[J]. Accounts of Chemical Research, 2010, 43(1): 68–78. doi: 10.1021/ar900130b

    [104] 李亚娟, 王明瑞, 韩冰, 等. 燃气分析法测试燃气轮机主燃烧室燃烧效率、气态污染物误差分析[J]. 航空动力学报, 2017, 32(5): 1051–1057. DOI: 10.13224/j.cnki.jasp.2017.05.004

    LI Y J, WANG M R, HAN B, et al. Gas turbine primary combustor error analysis of combustion efficiency and exhaust emission using gas analysis method[J]. Journal of Aerospace Power, 2017, 32(5): 1051–1057. doi: 10.13224/j.cnki.jasp.2017.05.004

    [105] 王明瑞, 王振华, 韩冰, 等. 航空发动机主燃烧室高温测试技术[J]. 航空发动机, 2016, 42(5): 87–93. DOI: 10.13477/j.cnki.aeroengine.2016.05.015

    WANG M R, WANG Z H, HAN B, et al. High temperature measurement technology for main combustion chamber of aeroengine[J]. Aeroengine, 2016, 42(5): 87–93. doi: 10.13477/j.cnki.aeroengine.2016.05.015

    [106]

    STRUCKMEIER U, OSSWALD P, KASPER T, et al. Sampling probe influences on temperature and species concentrations in molecular beam mass spectroscopic investigations of flat premixed low-pressure flames[J]. Zeitschrift für Physikalische Chemie, 2009, 223(4-5): 503–537. doi: 10.1524/zpch.2009.6049

    [107]

    SKEEN S A, YANG B, MICHELSEN H A, et al. Studies of laminar opposed-flow diffusion flames of acetylene at low-pressures with photoionization mass spectrometry[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1067–1075. doi: 10.1016/j.proci.2012.06.075

    [108]

    TAO T, SUN W, HANSEN N, et al. Exploring the negative temperature coefficient behavior of acetaldehyde based on detailed intermediate measurements in a jet-stirred reactor[J]. Combustion and Flame, 2018, 192: 120–129. doi: 10.1016/j.combustflame.2018.01.048

    [109]

    OSSWALD P, GÜLDENBERG H, KOHSE-HÖINGHAUS K, et al. Combustion of butanol isomers-a detailed molecular beam mass spectrometry investigation of their flame chemistry[J]. Combustion and Flame, 2011, 158(1): 2–15. doi: 10.1016/j.combustflame.2010.06.003

    [110] 陶涛. 宽范围下乙醛燃烧反应动力学的实验与模型研究[D]. 北京: 清华大学, 2018.

    TAO T. Experimental and modeling investigations on the combustion kinetics of acetaldehyde under a wide range conditions[D]. Beijing: Tsinghua University, 2018.

    [111]

    LIU D, TOGBÉ C, TRAN L S, et al. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography-Part I: Furan[J]. Combustion and Flame, 2014, 161(3): 748–765. doi: 10.1016/j.combustflame.2013.05.028

    [112]

    SCHENK M, LEON L, MOSHAMMER K, et al. Detailed mass spectrometric and modeling study of isomeric butene flames[J]. Combustion and Flame, 2013, 160(3): 487–503. doi: 10.1016/j.combustflame.2012.10.023

  • 期刊类型引用(3)

    1. 王一平,徐司雨,姚二岗,李恒,张洋,于瑾,赵凤起. 先进光学诊断技术在含能材料燃烧测试中的应用进展. 火炸药学报. 2024(01): 1-16 . 百度学术
    2. 吴凌昊,石小江,李杨,雷庆春,范玮. 超燃冲压发动机燃烧室光学测量技术发展现状. 计测技术. 2024(03): 57-71 . 百度学术
    3. 袁勋,于欣,彭江波,曾徽,欧东斌. 电弧风洞NO平面激光诱导荧光可视化方法与试验验证. 航空学报. 2023(19): 73-82 . 百度学术

    其他类型引用(1)

图(8)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  93
  • PDF下载量:  84
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-12-24
  • 修回日期:  2023-02-09
  • 录用日期:  2023-02-12
  • 刊出日期:  2023-10-29

目录

/

返回文章
返回
x 关闭 永久关闭