随积冰历程的机翼蒙皮载荷实验研究

Experimental analysis on aero-loading of wing skin with icing accretion

  • 摘要: 积冰改变了翼型的气动外形和绕流流场,使得机翼气动载荷分布产生动态变化。蒙皮作为气动载荷的承受及传递对象,会在气动载荷的动态作用下产生不同的振动响应。以某大弯度翼型为研究对象,提取了典型积冰增长过程中尾缘上下蒙皮振动特征,采用载荷谱方法研究积冰全历程的蒙皮振动及流场变化特性,并分析了不同材质的蒙皮在结冰不同阶段的响应及结构稳定性。结果表明:不同材质蒙皮对冰致脱体涡及后缘分离涡具有不同的载荷感知特性;刚性蒙皮载荷谱及其能量相对集中,柔性蒙皮载荷相对分散;随着积冰增多、冰角增长,脱体涡主频逐渐前移,冰角表面小冰枝引起宽幅高频振动;前缘脱体涡与尾迹掺混造成翼型后缘绕流载荷能量增加。

     

    Abstract: Ice accretion changes the aerodynamic shape and flow field of the airfoil, which makes the aerodynamic load distribution of the wing change dynamically. The skin, as the object of bearing and transferring aero-loading, produces different vibration responses under its dynamic action. Taking a large camber and thick airfoil as an object, the vibration characteristics of the upper and lower skins of the trailing edge under the typical icing condition are extracted, the load spectrum is used to study the skin vibration and flow field changes, and the structural stability of different skin is investigated. The results show that: Different skins have different load sensing performance for the ice-induced detached vortices and trailing edge separated vortices; the load spectrum and energy are relatively concentrated for the rigid skin while scattered for the flexible skin; as the ice accretes, the dominant frequency of detached vortices decreases slightly, substrate ice causes wide-width and high-frequency vibration, and the mixing of detached vortices and the wake results in the increase of the loading energy around the trailing edge.

     

/

返回文章
返回