Abstract:
Using the particle field pulsed laser holography imaging technique, the spatial distribution of droplet diameter in an aeroengine combustor is measured, the atomization process is studied, and the spatial distribution of droplets diameter in the combustor is obtained too. The numerical sprays models of the primary and secondary atomization are established, and a numerical software for the three-dimensional two-phase combustion in the aeroengine combustor is developed. Based on the LISA atomization model and KH-RT breakup model, the primary atomization process and secondary atomization process in the combustor are simulated numerically, obtaining the distribution of fuel spray droplets in the combustor. The simulation results are compared with experiments. The result indicate that the atomization models developed in this work can properly simulate the whole process of spray atomization under the conditions of high temperature, high pressure and strong swirling in aeroengine combustors.