Experimental and numerical study on spray atomization in a double-swirler combustor

Liu Richao, Le Jialing, Chen Liujun, Yang Shunhua, Song Wenyan

Liu Richao, Le Jialing, Chen Liujun, Yang Shunhua, Song Wenyan. Experimental and numerical study on spray atomization in a double-swirler combustor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 24-31, 45. DOI: 10.11729/syltlx20170093
Citation: Liu Richao, Le Jialing, Chen Liujun, Yang Shunhua, Song Wenyan. Experimental and numerical study on spray atomization in a double-swirler combustor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 24-31, 45. DOI: 10.11729/syltlx20170093
刘日超, 乐嘉陵, 陈柳君, 杨顺华, 宋文艳. 双旋流燃烧室两相喷雾试验和数值研究[J]. 实验流体力学, 2017, 31(5): 24-31, 45. DOI: 10.11729/syltlx20170093
引用本文: 刘日超, 乐嘉陵, 陈柳君, 杨顺华, 宋文艳. 双旋流燃烧室两相喷雾试验和数值研究[J]. 实验流体力学, 2017, 31(5): 24-31, 45. DOI: 10.11729/syltlx20170093

Experimental and numerical study on spray atomization in a double-swirler combustor

Funds: 

NSFC 91641205

More Information
    Author Bio:

    Liu Richao(1986-), male, born in Qingtian Zhejiang province, doctoral candidate.Engaged in combustion and flow in aero-engine research.Address:Xinduhui Ⅱ-806, Beijiao town, Shunde district, Foshan City, Guangdong Province (528311).E-mail:lrc19860517@sina.cn

    Corresponding author:

    Liu Richao, E-mail: lrc19860517@sina.cn

双旋流燃烧室两相喷雾试验和数值研究

详细信息
  • 中图分类号: V231.3

  • Abstract: Using the particle field pulsed laser holography imaging technique, the spatial distribution of droplet diameter in an aeroengine combustor is measured, the atomization process is studied, and the spatial distribution of droplets diameter in the combustor is obtained too. The numerical sprays models of the primary and secondary atomization are established, and a numerical software for the three-dimensional two-phase combustion in the aeroengine combustor is developed. Based on the LISA atomization model and KH-RT breakup model, the primary atomization process and secondary atomization process in the combustor are simulated numerically, obtaining the distribution of fuel spray droplets in the combustor. The simulation results are compared with experiments. The result indicate that the atomization models developed in this work can properly simulate the whole process of spray atomization under the conditions of high temperature, high pressure and strong swirling in aeroengine combustors.
    摘要: 采用粒子场脉冲激光全息技术对航空发动机燃烧室中的雾化场进行了测量,得到了燃烧室中燃油液滴直径的空间分布,从而对燃烧室中的雾化过程进行了研究。自主开发完成了适用于航空发动机燃烧室的三维两相数值计算平台,建立了首次雾化模型和二次雾化模型。基于LISA模型和KH-RT模型,对燃烧室中的首次雾化过程和二次雾化过程进行了数值模拟,得到了燃烧室中液雾的空间分布。通过将计算结果与试验结果进行对比,显示开发完成的雾化模型能很好的模拟高温高压,强旋流条件下航空发动机燃烧室的整个喷雾雾化过程。
  • 图  1   激光全息光路示意图

    Fig.  1   Laser hologram optical beam diagram

    图  2   粒子场记录(a)和粒子场的复现(b)

    Fig.  2   Particle field information record (a) and reproductive principle diagram (b)

    图  3   液膜的变形过程

    Fig.  3   Liquid film formation process diagram

    图  4   计算网格

    Fig.  4   Calculation grid

    图  5   边界条件

    Fig.  5   Boundary condition

    图  6   Y=0平面上液滴索太尔平均直径沿X轴分布

    Fig.  6   The Sauter mean diameter distribution of droplets along X axis (Y=0mm)

    图  7   Z=0平面上液滴索太尔平均直径沿X轴分布

    Fig.  7   The Sauter mean diameter distribution of droplets along X axis (Z=0mm)

    图  8   X=31.5mm平面上液滴索太尔平均直径沿Y轴分布

    Fig.  8   The Sauter mean diameter distribution of droplets along Y axis (X=31.5mm)

    图  9   X=31.5mm平面上液滴索太尔平均直径沿Z轴分布

    Fig.  9   The Sauter mean diameter distribution of droplets along Z axis (X=31.5mm)

    图  10   喷雾结构

    Fig.  10   Spray structure

    图  11   冷流状态下燃油液滴分类显示

    Fig.  11   Classification of kerosene droplets in cold flow

    图  12   Y=0平面内燃油液滴的索太尔平均直径分布

    Fig.  12   The Sauter mean diameter distribution of droplets in Y=0 Plane

    图  13   Z=0平面内燃油液滴的索太尔平均直径分布

    Fig.  13   The Sauter mean diameter distribution of droplets in Z=0 Plane

  • [1]

    Leong M Y, McDonell V C. Mixing of an irblast atomized fuel spray injected into a crossflow of air[R]. NASA/CR-2000-210467.

    [2]

    Jun C, Jeng S M. The structure of a swirl-stabilized reacting spray issued from an axial swirler[C]. 43rd AIAA Aerospace Sciences Meeting & Exhibit 10-13 January 2005/Reno, Nevada.

    [3]

    Batarseh F Z M. Spray generated by an airblast atomizer: atomization, propagation and aerodynamic instability[D]. Darmstadt: Technische Universitat Darmstadt, Doktor-Ingenieurs, 2008.

    [4]

    Zhang Z. Experimental study on fuel spray characteristics in model combustor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.

    [5]

    Xu R, Zhao J X, Yan Y W. Fuel spray characteristic of TAPS/MLDI low emission combustor[J]. Journal of Aerospace Power, 2012, 27(11):2421-2428. http://en.cnki.com.cn/Article_en/CJFDTotal-HKDI201211005.htm

    [6]

    Deng Y H, Zhu J W, Yan Y W. Cold flow field and fuel spray charactersitic of LPP low emission combustor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(2):162-169.

    [7]

    Jaegle F, Senoner J M. Eulerian and Lagrangian spray simulations of an aeronautical multipoint injector[J]. Proceedings of the Combustion Institute, 2011, 33(2):2099-2107. DOI: 10.1016/j.proci.2010.07.027

    [8]

    Hideki M, Ryoichi K. Large-eddy simulation of turbulent spray combustion in a subscale aircraft jet engine combustor-predictions of NO and soot concentrations[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135:1043-1052. https://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?articleID=1723415

    [9]

    Anthony C, Jeffery P. Comparing spray characteristics from Reynolds Averaged Navier-Stokes (RANS) National Combustion Code (NCC) calculations against experimental data for a turbulent reacting flow[R]. AIAA-2010-578, 2010.

    [10]

    Cai W X. Research on numerical simulation of two-phase reacting flow field and combustion performance of annular combustors[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007.

    [11]

    Yan Y W, Song S W, Hu H S. Numerical investigations of two-phase spray combustion flow fields in slinger annular combustor[J]. Journal of Aerospace Power, 2011, 26(5):1003-1010. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HKDI201105008.htm

    [12]

    Senecal P K, Schmidt D P. Modeling high-speed viscous liquid sheet atomization[J]. International Journal of Multiphase Flow, 1999, 25(6-7):1073-1097. DOI: 10.1016/S0301-9322(99)00057-9

    [13]

    Schmidt D P, Nouar I. Pressure-swirl atomization in the near field[R]. SAE Technical Paper, 1999-01-0496.

    [14]

    Lichtarowicz A K, Duggins R K, Markland E. Discharge coefficients for incompressible non-cavitating flow through long orifices[J]. Journal of Mechanical Engineering Science, 1965:561-580. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HKDI201105008.htm

    [15]

    Reitz R D, Diwakar R. Structure of high-pressure fuel sprays[R]. SAE Technical Paper Series 870598, 1987.

    [16]

    Reitz R D. Modeling atomization processes in high-pressure vaporizing sprays[J]. Atomisation and Spray Technology, 1987, 3:309-337. http://adsabs.harvard.edu/abs/1987AtST....3..309R

    [17]

    Patterson M A, Reitz R D. Modeling the effects of fuel spray characteristics on diesel engine combustion and emission[R]. SAE Technical Paper 980131, Detroit, 1998.

  • 期刊类型引用(1)

    1. 蔡延青,杨晓丽,王凯兴,刘富强,冷先银,王少林,刘存喜,穆勇,徐纲. 两级旋流器径向间距对贫油直喷分级燃烧室流场和雾化影响的实验研究. 实验流体力学. 2023(06): 15-24 . 本站查看

    其他类型引用(0)

图(13)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  142
  • PDF下载量:  16
  • 被引次数: 1
出版历程
  • 收稿日期:  2017-07-04
  • 修回日期:  2017-09-25
  • 刊出日期:  2017-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭