壁面剪应力标定方法研究综述

严宇超, 姜澄宇, 马炳和, 薛晓晗, 罗剑

严宇超, 姜澄宇, 马炳和, 薛晓晗, 罗剑. 壁面剪应力标定方法研究综述[J]. 实验流体力学, 2017, 31(2): 20-25. DOI: 10.11729/syltlx20170007
引用本文: 严宇超, 姜澄宇, 马炳和, 薛晓晗, 罗剑. 壁面剪应力标定方法研究综述[J]. 实验流体力学, 2017, 31(2): 20-25. DOI: 10.11729/syltlx20170007
Yan Yuchao, Jiang Chengyu, Ma Binghe, Xue Xiaohan, Luo Jian. Review of the calibration methods and devices for wall shear stress[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 20-25. DOI: 10.11729/syltlx20170007
Citation: Yan Yuchao, Jiang Chengyu, Ma Binghe, Xue Xiaohan, Luo Jian. Review of the calibration methods and devices for wall shear stress[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 20-25. DOI: 10.11729/syltlx20170007

壁面剪应力标定方法研究综述

基金项目: 

国家重大科学仪器设备开发专项 2013YQ040911

详细信息
    作者简介:

    严宇超 (1991-), 男, 四川乐山人, 博士研究生。研究方向:微机械制造及微纳米技术。通信地址:陕西省西安市碑林区友谊西路127号西北工业大学462信箱 (710072)。E-mail:yanyuchao@mail.nwpu.edu.cn

    通讯作者:

    马炳和, E-mail: mabh@nwpu.edu.cn

  • 中图分类号: TP212

Review of the calibration methods and devices for wall shear stress

  • 摘要: 流体壁面剪应力的标定是实现该类传感器测量的前提。本文介绍了目前主要的3种壁面剪应力静态标定方法和2种动态标定方法,研究了剪应力基准发生原理、标定装置组成及适用范围。归纳总结了各类标定方法的优势与缺点,为壁面剪应力传感器标定方法的合理选择提供参考。
    Abstract: Wall shear stress measurement with micro sensors is an effective means to study the flow friction. It is fundamental and important work to calibrate the sensors accurately. Three static and two dynamic calibration methods are introduced in this paper. The calibration devices, working principles, and behavioral models of wall shear stress measurement are analyzed. The features of calibration methods are summarized, and advice is provided for selecting the proper calibration method.
  • 图  1   平板边界层

    Fig.  1   The boundary layer along a flat plate

    图  2   平板边界层转捩

    Fig.  2   Laminar-turbulent transition on a flat plate

    图  3   动量损失剪应力传感器标定系统

    Fig.  3   The calibration system of wall shear stress sensors

    图  4   管道流动剪应力发生装置

    Fig.  4   Wall shear stress calibration device

    图  5   空气介质的剪应力标定装置示意图

    Fig.  5   Air static wall shear stress calibration device

    图  6   扁形水槽内流体纯剪切流示意图

    Fig.  6   The boundary layer in a thin tunnel

    图  7   微型扁薄水槽剪应力发生装置

    Fig.  7   The micro calibration tunnel of wall shear stress

    图  8   旋转圆轮标定法示意图

    Fig.  8   Rotating wheel wall shear stress calibration device

    图  9   (a) 锥板式标定装置原理图; (b) 静态标定的圆盘示意图; (c) 圆筒式旋转黏度计测量原理; (d) 旋转圆筒-平板标定法示意图

    Fig.  9   (a) Cone-plate wall shear stress calibration device. (b) Disk static calibration device.(c) Coaxial cylinder viscometers measurement device. (d) Rotating cylinder-plat wall shear stress calibration device

    图  10   佛罗里达大学动态标定装置示意图

    Fig.  10   Dynamic wall shear stress calibration device designed by university of Florida

    图  11   佛罗里达大学动态标定装置在恒定振幅激励下的频率响应

    Fig.  11   Plot of the frequency response of the PWT for constant voltage amplitude of speaker excitation

    图  12   动态标定圆盘示意图

    Fig.  12   Disk dynamic calibration device

  • [1]

    Xu Y, Jiang F, Newbern S, et al. Flexible shear-stress sensor skin and its application to unmanned aerial vehicles[J]. Sensors & Actuators A:Physical, 2003, 105(3):321-329. https://www.researchgate.net/publication/222825925_Flexible_shear-stress_sensor_skin_and_its_application_to_unmanned_aerial_vehicles

    [2]

    Sells J, Chandrasekharan V, Meloy J, et al. Microfabricated silicon-on-Pyrex passive wireless wall shear stress sensor[J]. Sensors, 2011:77-80. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000006127352

    [3]

    Chandrasekharan V, Sells J, Meloy J, et al. A microscale di-fferential capacitive direct wall-shear-stress sensor[J]. Journal of Microelectromechanical Systems, 2011, 20(3):622-635. DOI: 10.1109/JMEMS.2011.2140356

    [4]

    Ma B H, Ren J Z, Deng J J, et al. Flexible thermal sensor array on PI film substrate for underwater applications[C]. Micro Electro Mechanical Systems (MEMS), IEEE 23rd International Conference, 2010:679-682.

    [5]

    Osorio O D, Silin N. Wall shear stress hot film sensor for use in gases[J]. Journal of Physics:Conference Series. IOP Publishing, 2011, 296(1):012002.

    [6]

    Xiang D, Yang Y, Xu Y, et al. MEMS-based shear-stress sensor for skin-friction measurements[C]. Instrumentation and Measurement Technology Conference (I2MTC), IEEE, 2010:656-661.

    [7] 黄欢, 孙海浪, 田于逵, 等.水下MEMS壁面剪应力传感器标定方案仿真分析与实验验证[J].实验流体力学, 2016, 30(2):79-83. http://www.syltlx.com/CN/abstract/abstract10921.shtml

    Huang H, Sun H L, Tian Y K, et al. CFD analysis and experimental validation on the scheme of calibration for MEMS wall shear stress sensors array for underwater applications[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2):79-83. http://www.syltlx.com/CN/abstract/abstract10921.shtml

    [8]

    Zhe J, Modi V, Farmer K R. A microfabricated wall shear-stress sensor with capacitative sensing[J]. Journal of Microelectromechanical Systems, 2005, 14(1):167-175. DOI: 10.1109/JMEMS.2004.839001

    [9]

    Chandrasekaran V, Cain A, Nishida T, et al. Dynamic calibration technique for thermal shear stress sensors with variable mean flow[C]. Aerospace Sciences Meeting and Exhibit, 2000:56-65.

    [10]

    Scott M. The need for a shear stress calibration standard[C]. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland, 2004:28.

    [11]

    Sheplak M, Padmanabhan A, Schmidt M A, et al. Dynamic calibration of a shear-stress sensor using stokes-layer excitation[J]. AIAA Journal, 2001, 39(5):819-823. DOI: 10.2514/2.1415

    [12]

    Ng K Y, Shajii J, Schmidt M A. A liquid shear-stress sensor fabricated using wafer bonding technology[C]. International Conference on Solid-State Sensors and Actuators, 1991:931-934.

    [13]

    Hyman D, Pan T, Reshotko E, et al. Microfabricated shear stress sensors, part 2:testing and calibration[J]. AIAA Journal, 1999, 37(1):73-78. DOI: 10.2514/2.666

    [14] 章梓雄, 董曾南.粘性流体力学[M].清华大学出版社, 2011.

    Zhang Z X, Dong Z N. Viscous fluid mechanics[M]. Beijing:Tsinghua University Press, 2011.

    [15]

    Ludwig P. Applied hydro-and aeromechanics[M]. Dover Publications, 1957.

    [16]

    Tani I, Hama R, Mituisi S. On the permissible roughness in the laminar boundary layer[R]. Report of the Aeronautical Research Institute Tokyo Imperial University, 1940, 15:417-428.

    [17]

    Schetz J A, Fuhs A E. Handbook of fluid dynamics and fluid machinery:fundamentals of fluid dynamics, Volume Ⅰ[J]. Journal of Fluids Engineering, 1996, 118(2):218. DOI: 10.1115/1.2817366

    [18]

    Patel M P, Reshotko E, Hyman D. Microfabricated shear-stress sensors, part 3:reducing calibration uncertainty[J]. AIAA Journal, 2002, 40(8):1582-1588. DOI: 10.2514/2.1827

    [19]

    Zucrow M J, Hoffman J D. Gas dynamics (vol1)[M]. John Wiley & Sons, 1976.

    [20]

    Arkillic E B, Breuer K S. Gaseous flow in small channels[C]. AIAA, Shear Flow Conference, Orlando, FL, 1993.

    [21]

    Padmanabhan A, Goldberg H, Breuer K D, et al. A wafer-bonded floating-element shear stress microsensor with optical position sensing by photodiodes[J]. Journal of Microelectromechanical Systems, 1997, 5(4):307-315.

    [22]

    Liang J M, Yang D G, Li J Q, et al. Calibration of a thermal MEMS shear stress sensor array[J]. Arabian Journal of Geosciences, 2015, 8(10):8089-8105. DOI: 10.1007/s12517-015-1781-z

    [23]

    Xu Y, Lin Q, Lin G, et al. Micromachined thermal shear-stress sensor for underwater applications[J]. Journal of Microelectromechanical Systems, 2005, 14(5):1023-1030. DOI: 10.1109/JMEMS.2005.856644

    [24]

    Liu C, Huang J B, Zhu Z, et al. A micromachined flow shear-stress sensor based on thermal transfer principles[J]. Journal of Microelectromechanical Systems, 1999, 8(1):90-99. DOI: 10.1109/84.749408

    [25]

    Li X Y, Li Y B, Ma B H, et al. Modelling and calibration of microthermal sensor for underwater wall shear stress measurement[J]. Micro & Nano Letters, 2014, 9(7):486-489.

    [26]

    Zuckerwar A, Scott M. A rotary flow channel for shear stress sensor calibration[C]. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2004:2303.

    [27]

    Shajii J, Ng K Y, Schmidt M A. A microfabricated floating-element shear stress sensor using wafer-bonding technology[J]. Journal of Microelectromechanical Systems, 1992, 1(2):89-94. DOI: 10.1109/84.157363

    [28] 陈惠钊. 粘度测量[M]. 第二版. 北京: 中国计量出版社, 2002: 56-103

    Chen H Z. Viscosity measurement[M]. 2nd ed. Beijing:China Metrology Press, 2002:56-103

    [29]

    Bindzus W, Fayard G, Van Lengerich B, et al. Application of an in-line viscometer to determine the shear stress of plasticised wheat starch[J]. Starch-Stärke, 2002, 54(6):243-251. DOI: 10.1002/(ISSN)1521-379X

    [30]

    Buschmann M H, Dieterich P, Adams N A, et al. Analysis of flow in a cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells[J]. Biotechnology and Bioengineering, 2005, 89(5):493-502. DOI: 10.1002/(ISSN)1097-0290

    [31]

    Kim I C, Sang J L. Characterization of a miniature thermal shear-stress sensor with backside connections[J]. Sensors & Actuators A:Physical, 2006, 128(2):305-311. https://www.researchgate.net/publication/222200344_Characterization_of_a_miniature_thermal_shear-stress_sensor_with_backside_connections

    [32]

    Brown G L, Davey R F. The calibration of hot films for skin friction measurement[J]. Review of Scientific Instruments, 1971, 42(1):1729-1731.

    [33] 肖文涛, 张国忠, 刘坤, 等.同轴圆筒旋转粘度计测量误差的分析与修正[J].现代科学仪器, 2012, (2):114-118. http://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ201202031.htm

    Xiao W T, Zhang G Z, Liu K, et al. Analysis and correction for measurement errors of coaxial cylinder viscometers[J]. Modern Scientific Instruments, 2012, (2):114-118. http://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ201202031.htm

    [34] 谢尧生, 夏桂清.旋转粘度计圆筒尺寸对粘度测试的影响[J].硅酸盐通报, 1984, (1):44-51. http://www.cnki.com.cn/Article/CJFDTOTAL-GSYT198401006.htm

    Xie Y S, Xia G Q. Rotational viscometer cylinder size effect on viscosity test[J]. Bulletin of the Chinese Ceramic Society, 1984, (1):44-51. http://www.cnki.com.cn/Article/CJFDTOTAL-GSYT198401006.htm

    [35]

    Terashima O, Sawada T, Sakai Y, et al. Measurement of wall shear stress by using micro-fabricated sensor[C]//Proceedings of ISEM, Japan, Nagoya University, 2012.

图(12)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  147
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-12
  • 修回日期:  2017-02-22
  • 刊出日期:  2017-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭