Citation: | HAN Y K, PAN C, LIU W, et al. A multi-view stereo vision approach for the free surface measurement of ship-induced waves[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240084. |
The complex wave structures generated by a ship significantly influence the wave-making resistance, which is a critical factor in optimizing vessel performance and hull design. Traditional measurement methods, such as wave height gauges, are limited by sparse measurement points, low spatial resolution, and potential interference with the wave surface, making them unsuitable for full-field wave surface measurements in complex wave systems. To address these limitations, a non-contact measurement method for ship wave surfaces based on multi-view stereoscopic vision is presented. The proposed scheme includes: applying neural networks for spatial calibration and the three-dimensional reconstruction of feature points, using an ant colony particle tracking algorithm for perspective matching, and conducting principal component analysis for still water baseline correction. Experimental results demonstrate that the proposed method can realize the wide-area free-surface measurement of the ship wave and effectively capture typical wave characteristics at various ship speeds. Compared to traditional measurement, the stereoscopic vision approach offers enhanced flexibility and suitability for real-time measurement of dynamic wave fields over large areas.
[1] |
张晨亮. 船舶静水兴波阻力及波形求解分析[D]. 上海: 上海交通大学, 2016.
ZHANG C L. Calculation and analysis of the steady wave drag and free surface waves induced by ships[D]. Shanghai: Shanghai Jiao Tong University, 2016.
|
[2] |
宋雅岚, 朱仁传, 缪国平, 等. Kelvin源求解船行波及其在总阻力估算上的应用[J]. 水动力学研究与进展(A辑), 2018, 33(1): 1–8. DOI: 10.16076/j.cnki.cjhd.2018.01.001
SONG Y L, ZHU R C, MIAO G P, et al. Applications of Kelvin source in ship wave problems and calculations of total resistance[J]. Chinese Journal of Hydrodynamics, 2018, 33(1): 1–8. doi: 10.16076/j.cnki.cjhd.2018.01.001
|
[3] |
万爽, 贺炜. 基于兴波理论的船型设计[J]. 舰船科学技术, 2023, 45(3): 39–42. DOI: 10.3404/j.issn.1672-7649.2023.03.007
WAN S, HE W. Research on ship form design based on wave making theory[J]. Ship Science and Technology, 2023, 45(3): 39–42. doi: 10.3404/j.issn.1672-7649.2023.03.007
|
[4] |
田于逵, 夏贤, 吴宝山, 等. 不同型线结构船艏表面压力特性对比实验研究[J]. 流体力学实验与测量, 2004, 18(1): 24–28. DOI: 10.3969/j.issn.1672-9897.2004.01.006
TIAN Y K, XIA X, WU B S, et al. Comparison of surface pressure characteristics of bulbous bows in different profiles through wind tunnel tests[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(1): 24–28. doi: 10.3969/j.issn.1672-9897.2004.01.006
|
[5] |
DEGIULI N, MARTIĆ I, FARKAS A, et al. Experimental assessment of the hydrodynamic characteristics of a bulk carrier in off-design conditions[J]. Ocean Engineering, 2023, 280: 114936. doi: 10.1016/j.oceaneng.2023.114936
|
[6] |
DRENNAN W M, DONELAN M A, MADSEN N, et al. Directional wave spectra from a swath ship at sea[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(4): 1109–1116. doi:10.1175/1520-0426(1994)011<1109:dwsfas>2.0.co;2
|
[7] |
NA B, SON S. Void fraction estimation using a simple combined wave gauge system under breaking waves[J]. Ocean Engineering, 2021, 241: 110059. doi: 10.1016/j.oceaneng.2021.110059
|
[8] |
WANEK J M, WU C H. Automated trinocular stereo imaging system for three-dimensional surface wave measurements[J]. Ocean Engineering, 2006, 33(5-6): 723–747. doi: 10.1016/j.oceaneng.2005.05.006
|
[9] |
CIFUENTES-LORENZEN A, EDSON J B, ZAPPA C J, et al. A multisensor comparison of ocean wave frequency spectra from a research vessel during the Southern Ocean gas exchange experiment[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(12): 2907–2925. doi: 10.1175/jtech-d-12-00181.1
|
[10] |
BLENKINSOPP C E, TURNER I L, ALLIS M J, et al. Application of LiDAR technology for measurement of time-varying free-surface profiles in a laboratory wave flume[J]. Coastal Engineering, 2012, 68: 1–5. doi: 10.1016/j.coastaleng.2012.04.006
|
[11] |
汪永号. 基于双目视觉的波面测量研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
WANG Y H. Research on wave surface measurement based on binocular vision[D]. Harbin: Harbin Engineering University, 2023.
|
[12] |
张军, 赵峰, 洪方文, 等. 拖曳水池随车式PIV技术的研究与应用[J]. 流体力学实验与测量, 2003, 17(2): 93–97. DOI: 10.3969/j.issn.1672-9897.2003.02.019
ZHANG J, ZHAO F, HONG F W, et al. Towing PIV technique and its application in a tank[J]. Experiments and Measurements in Fluid Mechanics, 2003, 17(2): 93–97. doi: 10.3969/j.issn.1672-9897.2003.02.019
|
[13] |
尹凤鸣. 立体匹配技术在波浪摄影测量中的应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
YIN F M. Research on the application of stereo matching technology in the photogrammetry of wave images[D]. Harbin: Harbin Engineering University, 2016.
|
[14] |
BERGAMASCO F, TORSELLO A, SCLAVO M, et al. WASS: an open-source pipeline for 3D stereo reconstruction of ocean waves[J]. Computers & Geosciences, 2017, 107: 28–36. doi: 10.1016/j.cageo.2017.07.001
|
[15] |
DE VRIES S, HILL D F, DE SCHIPPER M A, et al. Remote sensing of surf zone waves using stereo imaging[J]. Coastal Engineering, 2011, 58(3): 239–250. doi: 10.1016/j.coastaleng.2010.10.004
|
[16] |
GOMIT G, CHATELLIER L, CALLUAUD D, et al. Free surface measurement by stereo-refraction[J]. Experiments in Fluids, 2013, 54(6): 1540. doi: 10.1007/s00348-013-1540-4
|
[17] |
姜文正, 袁业立, 王英霞. 无海面控制点的立体摄影海浪测量方法研究[J]. 物理学报, 2012, 61(11): 533–540. DOI: 10.7498/aps.61.119101
JIANG W Z, YUAN Y L, WANG Y X. Study on stereo photography for ocean wave measurements in no sea control points[J]. Acta Physica Sinica, 2012, 61(11): 533–540. doi: 10.7498/aps.61.119101
|
[18] |
HAN Y K, PAN C, CHENG Z P, et al. A PTV-based feature-point matching algorithm for binocular stereo photogrammetry[J]. Measurement Science and Technology, 2023, 34(12): 125602. doi: 10.1088/1361-6501/acf875
|
[19] |
ITO M, ISHII A. Three-view stereo analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(4): 524–532. doi: 10.1109/TPAMI.1986.4767817
|
[20] |
窦建宇, 潘翀. 基于神经网络的体视PIV空间标定模型[J]. 航空学报, 2021, 42(4): 524720. DOI: 10.7527/S1000-6893.2020.24720
DOU J Y, PAN C. Spatial calibration model of stereo PIV based on neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524720. doi: 10.7527/S1000-6893.2020.24720
|
[21] |
韩雨坤, 潘翀, 王文涛, 等. 基于多目立体视觉和神经网络标定的表面形貌测量方法研究[J]. 实验流体力学, 2021, 35(6): 44–51. DOI: 10.11729/syltlx20210048
HAN Y K, PAN C, WANG W T, et al. Research on surface measurement method based on multi-view stereo vision and neural network calibration[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 44–51. doi: 10.11729/syltlx20210048
|
[22] |
NIE M Y, PAN C, WANG J J, et al. A hybrid 3D particle matching algorithm based on ant colony optimization[J]. Experiments in Fluids, 2021, 62(4): 1–17. doi: 10.1007/s00348-021-03160-4
|
[23] |
Bellekens B, Spruyt V, Berkvens R, et al. A benchmark survey of rigid 3D point cloud registration algorithms[J]. International Journal on Advances in Intelligent Systems, 2015, 8(1-2): 118–127. doi: 10.1016/j.robot.2021.103734
|
[24] |
KIM W J, VAN S H, KIM D H. Measurement of flows around modern commercial ship models[J]. Experiments in Fluids, 2001, 31(5): 567–578. doi: 10.1007/s003480100332
|