Citation: | SHI W L, ZHANG Z J, LI X H, et al. Flow structure measurement of high-enthalpy plasma based on laser-speckle background oriented schlieren[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 95-102. DOI: 10.11729/syltlx20240051 |
The inductively coupled plasma wind tunnel is an important facility for simulating high-enthalpy fluid. Due to its extreme conditions, such as high enthalpy, very low density, and strong self luminosity, traditional flow visualization and measurement methods cannot effectively capture flow structures. Focusing on the flow field characteristics of the inductively coupled plasma wind tunnel, this study investigates the laser speckle background oriented schlieren technique. Compared to conventional printed or sprayed backgrounds, the quality of laser speckle imaging is independent of the camera's focus length, and it offers high brightness, short pulse time, and monochromaticity, which significantly improves the system's sensitivity and anti-interference capabilities. The optical flow algorithm is applied to calculate the displacement of the laser speckles, enhancing the accuracy of small displacement calculations in low-density flow fields. The structure of the detached shock wave over a spherical cylinder was obtained in the inductively coupled plasma wind tunnel. The shape and position of the shock wave were in good agreement with the numerical results, verifying the effectiveness of the background oriented schlieren technique under extreme flow conditions.
[1] |
姜宗林. 高超声速高焓风洞试验技术研究进展[J]. 空气动力学学报, 2019, 37(3): 347–355. DOI: 10.7638/kqdlxxb-2019.0009
JIANG Z L. Progresses on experimental techniques of hypersonic and highenthalpy wind tunnels[J]. Acta Aerodynamica Sinica, 2019, 37(3): 347–355. doi: 10.7638/kqdlxxb-2019.0009
|
[2] |
战培国, 胥家常. 国外等离子体流动控制风洞试验技术研究[J]. 实验流体力学, 2009, 23(2): 100–104. DOI: 10.3969/j.jssn.1672-9897.2009.02.021
ZHAN P G, XU J C. A summary of wind tunnel experimental techniques on plasma flow control[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(2): 100–104. doi: 10.3969/j.jssn.1672-9897.2009.02.021
|
[3] |
LOEHLE S, ZANDER F, EBERHART M, et al. Assessment of high enthalpy flow conditions for re-entry aerothermo-dynamics in the plasma wind tunnel facilities at IRS[J]. CEAS Space Journal, 2022, 14(2): 395–406. doi: 10.1007/s12567-021-00396-y
|
[4] |
FUJITA K, MIZUNO M, ISHIDA K, et al. Spectroscopic flow evaluation in inductively coupled plasma wind tunnel[J]. Journal of Thermophysics and Heat Transfer, 2008, 22(4): 685–694. doi: 10.2514/1.34032
|
[5] |
GREENE B R, CLEMENS N T, VARGHESE P L, et al. Characterization of a 50 kW inductively coupled plasma torch for testing of ablative thermal protection materials[C]//Proceedings of the 55th AIAA Aerospace Sciences Meeting. 2017: AIAA 2017-0394. doi: 10.2514/6.2017-0394
|
[6] |
FANG S H, LIN X, ZENG H, et al. Gas–surface interactions in a large-scale inductively coupled plasma wind tunnel investigated by emission/absorption spectroscopy[J]. Physics of Fluids, 2022, 34(8): 082113. doi: 10.1063/5.0102274
|
[7] |
STUDER D, VERVISCH P. Raman scattering measurements within a flat plate boundary layer in an inductively coupled plasma wind tunnel[J]. Journal of Applied Physics, 2007, 102(3): 033303. doi: 10.1063/1.2768067
|
[8] |
DENG W F, LIU Y M, ZHANG J, et al. Measurement on electron density of high-power and large-volume ICP-heated wind tunnel with HCN laser interferometer[J]. Physics of Plasmas, 2022, 29(3): 033504. doi: 10.1063/5.0062975
|
[9] |
CIPULLO A, HELBER B, PANERAI F, et al. Investigation of freestream plasma flow produced by inductively coupled plasma wind tunnel[J]. Journal of Thermophysics and Heat Transfer, 2014, 28(3): 381–393. doi: 10.2514/1.t4199
|
[10] |
RICHARD H, RAFFEL M. Principle and applications of the background oriented schlieren (BOS) method[J]. Measurement Science and Technology, 2001, 12(9): 1576–1585. doi: 10.1088/0957-0233/12/9/325
|
[11] |
RAFFEL M. Background-oriented schlieren (BOS) techniques[J]. Experiments in Fluids, 2015, 56(3): 1–17. doi: 10.1007/s00348-015-1927-5
|
[12] |
熊渊. 背景纹影测量技术研究与应用进展[J]. 实验流体力学, 2022, 36(2): 30–48. DOI: 10.11729/syltlx20210173
XIONG Y. Recent advances in background oriented Schlieren and its applications[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 30–48. doi: 10.11729/syltlx20210173
|
[13] |
VENKATAKRISHNAN L, MEIER G E A. Density measurements using the Background Oriented Schlieren technique[J]. Experiments in Fluids, 2004, 37(2): 237–247. doi: 10.1007/s00348-004-0807-1
|
[14] |
KIRMSE T, AGOCS J, SCHRÖDER A, et al. Application of particle image velocimetry and the background-oriented schlieren technique in the high-enthalpy shock tunnel Göttingen[J]. Shock Waves, 2011, 21(3): 233–241. doi: 10.1007/s00193-011-0314-2
|
[15] |
KANEKO Y, NISHIDA H, TAGAWA Y. Background-oriented schlieren measurement of near-surface density field in surface dielectric-barrier-discharge[J]. Measurement Science and Technology, 2021, 32(12): 125402. doi: 10.1088/1361-6501/ac1ccc
|
[16] |
MEIER A H, ROESGEN T. Improved background oriented schlieren imaging using laser speckle illumination[J]. Experiments in Fluids, 2013, 54(6): 1549. doi: 10.1007/s00348-013-1549-8
|
[17] |
GOODMAN J W. Statistical properties of laser speckle patterns[M]//Topics in Applied Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1975: 9-75. doi: 10.1007/bfb0111436
|
[18] |
ATCHESON B, HEIDRICH W, IHRKE I. An evaluation of optical flow algorithms for background oriented schlieren imaging[J]. Experiments in Fluids, 2009, 46(3): 467–476. doi: 10.1007/s00348-008-0572-7
|