WANG F, ZHANG Y B, XI H D. Experimental study on the anisotropy in von Kármán swirling flow system[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 11-20. DOI: 10.11729/syltlx20230159
Citation: WANG F, ZHANG Y B, XI H D. Experimental study on the anisotropy in von Kármán swirling flow system[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 11-20. DOI: 10.11729/syltlx20230159

Experimental study on the anisotropy in von Kármán swirling flow system

More Information
  • Received Date: November 16, 2023
  • Revised Date: December 12, 2023
  • Accepted Date: December 18, 2023
  • Available Online: January 18, 2024
  • The degree of anisotropy in the Von Kármán Swirling (VKS) flow system was experimentally investigated. The three-dimensional velocity near the center of VKS was measured by tomographic PIV and two methods were adopted to calculate the second order Velocity Structure Function (VSF2) in order to study the scale-by-scale anisotropy. It is found that the fluctuation velocity is highly homogeneous. However, the Root-Mean-Square (RMS) velocity in the vertical direction is one-third times smaller than that in the horizontal direction, which characterizes the large-scale anisotropy. This large-scale anisotropy has left its fingerprint on the small scales, which is reflected by the observation that the scale-space distribution of VSF2 is isotropic in the horizontal plane while it is not in the vertical plane. Besides, this anisotropy diminishes as scale decreases, consistent with the local isotropy assumption proposed by Kolmogorov. This experimental study provides new insights into turbulent flows.

  • [1]
    POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000.
    [2]
    SCHLICHTING H, GERSTEN K. Fundamentals of boundary–layer theory[M]//Boundary-Layer Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016: 29-49. doi: 10.1007/978-3-662-52919-5_2
    [3]
    TAYLOR G I. Statistical theory of turbulence[J]. Proceedings of the Royal Society of London Series A - Mathematical and Physical Sciences, 1935, 151(873): 421–444. doi: 10.1098/rspa.1935.0158
    [4]
    BATCHELOR G K. The theory of homogeneous turbu-lence[M]. Cambridge: Cambridge University Press, 1953.
    [5]
    ORSZAG S A, PATTERSON Jr G S. Numerical simulation of three-dimensional homogeneous isotropic turbulence[J]. Physical Review Letters, 1972, 28(2): 76–79. doi: 10.1103/physrevlett.28.76
    [6]
    ISHIHARA T, GOTOH T, KANEDA Y. Study of high–Reynolds number isotropic turbulence by direct numerical simulation[J]. Annual Review of Fluid Mechanics, 2009, 41: 165–180. doi: 10.1146/annurev.fluid.010908.165203
    [7]
    KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1991, 434(1890): 9–13. doi: 10.1098/rspa.1991.0075
    [8]
    FRISCH U, KOLMOGOROV A N. Turbulence: the legacy of A. N. Kolmogorov[M]. Cambridge: Cambridge University Press, 1995.
    [9]
    MONIN A S, YAGLOM A M. Statistical fluid mechanics, volume Ⅱ: mechanics of turbulence[M]. New York: Dover Publications, 2013.
    [10]
    ZANDBERGEN P J, DIJKSTRA D. Von Kármán swirling flows[J]. Annual Review of Fluid Mechanics, 1987, 19: 465–491. doi: 10.1146/annurev.fl.19.010187.002341
    [11]
    DOUADY S, COUDER Y, BRACHET M E. Direct observation of the intermittency of intense vorticity filaments in turbulence[J]. Physical Review Letters, 1991, 67(8): 983–986. doi: 10.1103/physrevlett.67.983
    [12]
    VOTH G A, SATYANARAYAN K, BODENSCHATZ E. Lagrangian acceleration measurements at large Reynolds numbers[J]. Physics of Fluids, 1998, 10(9): 2268–2280. doi: 10.1063/1.869748
    [13]
    VOTH G A, LA PORTA A, CRAWFORD A M, et al. Measurement of particle accelerations in fully developed turbulence[J]. Journal of Fluid Mechanics, 2002, 469: 121–160. doi: 10.1017/s0022112002001842
    [14]
    BOURGOIN M, OUELLETTE N T, XU H T, et al. The role of pair dispersion in turbulent flow[J]. Science, 2006, 311(5762): 835–838. doi: 10.1126/science.1121726
    [15]
    TOMS B A. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers[C]//Proc. of In. Cong. On Rheology, 1948.
    [16]
    WHITE C M, MUNGAL M G. Mechanics and prediction of turbulent drag reduction with polymer additives[J]. Annual Review of Fluid Mechanics, 2008, 40: 235–256. doi: 10.1146/annurev.fluid.40.111406.102156
    [17]
    CRAWFORD A M, MORDANT N, XU H T, et al. Fluid acceleration in the bulk of turbulent dilute polymer solutions[J]. New Journal of Physics, 2008, 10(12): 123015. doi: 10.1088/1367-2630/10/12/123015
    [18]
    OUELLETTE N T, XU H T, BODENSCHATZ E. Bulk turbulence in dilute polymer solutions[J]. Journal of Fluid Mechanics, 2009, 629: 375–385. doi: 10.1017/s0022112009006697
    [19]
    XI H D, BODENSCHATZ E, XU H T. Elastic energy flux by flexible polymers in fluid turbulence[J]. Physical Review Letters, 2013, 111(2): 024501. doi: 10.1103/physrevlett.111.024501
    [20]
    ZHANG Y B, BODENSCHATZ E, XU H T, et al. Experimental observation of the elastic range scaling in turbulent flow with polymer additives[J]. Science Advances, 2021, 7(14): eabd3525. doi: 10.1126/sciadv.abd3525
    [21]
    陈正云, 张清福, 潘翀, 等. 超疏水旋转圆盘气膜层减阻的实验研究[J]. 实验流体力学, 2021, 35(3): 52–59. DOI: 10.11729/syltlx20200025

    CHEN Z Y, ZHANG Q F, PAN C, et al. An experimental study on drag reduction of superhydrophobic rotating disk with air plastron[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 52–59. doi: 10.11729/syltlx20200025
    [22]
    OUELLETTE N T, XU H T, BOURGOIN M, et al. Small-scale anisotropy in Lagrangian turbulence[J]. New Journal of Physics, 2006, 8(6): 102. doi: 10.1088/1367-2630/8/6/102
    [23]
    SREENIVASAN K R. On the universality of the Kolmogorov constant[J]. Physics of Fluids, 1995, 7(11): 2778–2784. doi: 10.1063/1.868656
    [24]
    YEUNG P K, ZHOU Y. Universality of the Kolmogorov constant in numerical simulations of turbulence[J]. Physical Review E, 1997, 56(2): 1746–1752. doi: 10.1103/physreve.56.1746
    [25]
    MONCHAUX R, RAVELET F, DUBRULLE B, et al. Properties of steady states in turbulent axisymmetric flows[J]. Physical Review Letters, 2006, 96(12): 124502. doi: 10.1103/physrevlett.96.124502
    [26]
    KNUTSEN A N, BAJ P, LAWSON J M, et al. The inter-scale energy budget in a von Kármán mixing flow[J]. Journal of Fluid Mechanics, 2020, 895: A11. doi: 10.1017/jfm.2020.277
    [27]
    TAYLOR M A, KURIEN S, EYINK G L. Recovering isotropic statistics in turbulence simulations: the Kolmogorov 4/5th law[J]. Physical Review E, 2003, 68(2): 026310. doi: 10.1103/PhysRevE.68.026310
  • Related Articles

    [1]Wu Jinhua, Sun Haisheng, Shen Zhihong, Jiang Yubiao. 旋转流场下的振荡动导数试验技术研究[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 54-58. DOI: 10.11729/syltlx20130057
    [3]HUANG Ming-qi, LAN Bo, YANG Yong-dong, PENG Xian-min. Φ5m[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(5): 94-97. DOI: 10.3969/j.issn.1672-9897.2013.05.018
    [4]WANG Hui, XIAO Jing-ping, GAO Da-peng, LIU Qing-lin, QIN San-chun, WANG Wen-hui. Research on automatic control system of wind tunnel test model[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3): 72-75. DOI: 10.3969/j.issn.1672-9897.2012.03.013
    [5]DENG Fan, CHEN Shao-song. Investigations of grid fins geometric feature influence on drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3): 10-15. DOI: 10.3969/j.issn.1672-9897.2011.03.003
    [6]CHEN Jia-qing, WANG Bo, WU Bo, CHU Qing-dong. CFD simulation of flow field in standard orifice plate flow meter[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(2): 51-55. DOI: 10.3969/j.issn.1672-9897.2008.02.010
    [7]JIA Qing, YANG Zhi-gang. Simulation and test research for a model wind tunnel test section at different collector angles[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 93-96. DOI: 10.3969/j.issn.1672-9897.2007.01.019
    [8]Investigation on the low Reynolds number characteristics of the lift and drag of low aspect ratio wings[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(4): 78-82. DOI: 10.3969/j.issn.1672-9897.2004.04.017
    [9]The series investigations on an aircraft in 4m×3m wind-tunnel[J]. Journal of Experiments in Fluid Mechanics, 2003, 17(4): 43-47. DOI: 10.3969/j.issn.1672-9897.2003.04.008
    [10]Assessments of measurement uncertainty of wind tunnel test based on symbolic math[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(3): 91-95. DOI: 10.3969/j.issn.1672-9897.2002.03.016
  • Cited by

    Periodical cited type(2)

    1. 车兵辉,魏然,曾伟. 风洞CTS试验六自由度机构控制方法研究. 计算机测量与控制. 2018(12): 84-88 .
    2. 贺云,张飞龙,徐志刚,刘哲. 一种基于风洞试验环境的轨迹捕获系统设计. 兵工学报. 2018(12): 2480-2487 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close