Citation: | GUAN X L, SUN X J, WANG W, et al. Effect of arc-shaped vortex generator on coherent structures and heat transfer enhancement in turbulence[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 104-112. DOI: 10.11729/syltlx20230142 |
The vortex generator is a common passively enhanced heat transfer element, which is widely used due to its high cost performance. In this paper, for the square pipe with an arc-shaped vortex generator, the Time-Resolved Particle Image Velocimetry (TRPIV) and the Large Eddy Simulation (LES) were used to analyze the characteristics of the induced coherent structure by the vortex generator in the turbulent flow and its effect on heat transfer enhancement. The statistical information of the turbulent characteristic quantities obtained by experimental studies shows the imprints of the hairpin vortex legs and low-speed streaks. The hairpin vortices and the Counter-rotating quasi-streamwise Vortices Pair (CVP) were extracted by the vortex identification criteria. It is found that these two different types of vortex structures coexist and interact with each other in the flow field induced by the arc vortex generator. With the evolution and development of the structures, their spanwise scales increase continuously. In order to study the relationship between turbulent coherent structures and heat transfer enhancement, the spatial distribution of the coherent structure and temperature gradient is analyzed by numerical simulation. It is noted that the distribution of the coherent structure and temperature gradient has good regional consistency, which reflects the influence and control of the turbulent coherent structure on heat transfer enhancement. By comparing the average Nusselt number before and after the installation of the arc-shaped vortex generator, it is found that the average Nusselt number increases significantly, up to about 20%. And the trend of the average Nusselt number’s change along the streamwise direction is consistent with the development and evolution of the coherent structure in turbulence.
[1] |
王江波. 管式换热器内涡流发生器对流强化传热研究[D]. 武汉: 武汉科技大学, 2022.
WANG J B. Study on convective heat transfer enhancement of vortex generators in tube heat exchanger[D]. Wuhan: Wuhan University of Science and Technology, 2022.
|
[2] |
吴淑英, 聂昌达, 叶为标, 等. 圆管内置涡流发生器强化传热数值模拟[J]. 太阳能学报, 2019, 40(3): 756–765. DOI: 10.19912/j.0254-0096.2019.03.022
WU S Y, NIE C D, YE W B, et al. Numerical simulation on heat transfer enhancement of tube with vortex generator[J]. Acta Energiae Solaris Sinica, 2019, 40(3): 756–765. doi: 10.19912/j.0254-0096.2019.03.022
|
[3] |
李仁康, 王如根, 何成, 等. 涡流发生器对高负荷压气机叶栅角区分离影响的实验研究[J]. 实验流体力学, 2017, 31(6): 22–28, 36. DOI: 10.11729/syltlx20160195
LI R K, WANG R G, HE C, et al. Experimental investigation on the effects of vortex generator on corner separation in a high-load compressor cascade[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 22–28, 36. doi: 10.11729/syltlx20160195
|
[4] |
ZHAO L M, QIAN Z Q, WANG X Y, et al. Analysis of the thermal improvement of plate fin-tube heat exchanger with straight and curved rectangular winglet vortex generators[J]. Case Studies in Thermal Engineering, 2023, 51: 103612. doi: 10.1016/j.csite.2023.103612
|
[5] |
SAINI P, DHAR A, POWAR S. Performance enhancement of fin and tube heat exchanger employing curved delta winglet vortex generator with circular punched holes[J]. International Journal of Thermofluids, 2023, 20: 100452. doi: 10.1016/j.ijft.2023.100452
|
[6] |
SRIVASTAVA K, SAHOO R R. Effect of pitch and angle of attack on thermal performance of new envelope and delta vortex generators for TEG: An experimental and numerical approach[J]. International Journal of Thermal Sciences, 2024, 195: 108671. doi: 10.1016/j.ijthermalsci.2023.108671
|
[7] |
TANG L H, CHU W X, AHMED N, et al. A new configuration of winglet longitudinal vortex generator to enhance heat transfer in a rectangular channel[J]. Applied Thermal Engineering, 2016, 104: 74–84. doi: 10.1016/j.applthermaleng.2016.05.056
|
[8] |
GUPTA A, ROY A, GUPTA S, et al. Numerical investigation towards implementation of punched winglet as vortex generator for performance improvement of a fin-and-tube heat exchanger[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119171. doi: 10.1016/j.ijheatmasstransfer.2019.119171
|
[9] |
李海珠, 闵春华, 王坤, 等. 涡流发生器强化暖气片散热特性的数值研究[J]. 工程热物理学报, 2022, 43(1): 158–163.
LI H Z, MIN C H, WANG K, et al. Numerical investigation of enhancement heat dissipation characteristics of the radiator with vortex generators[J]. Journal of Engineering Thermophysics, 2022, 43(1): 158–163.
|
[10] |
DOGAN M, ERZINCAN S. Experimental investigation of thermal performance of novel type vortex generator in rectangular channel[J]. International Communications in Heat and Mass Transfer, 2023, 144: 106785. doi: 10.1016/j.icheatmasstransfer.2023.106785
|
[11] |
ESMAEILZADEH A, AMANIFARD N, DEYLAMI H M. Comparison of simple and curved trapezoidal longitudinal vortex generators for optimum flow characteristics and heat transfer augmentation in a heat exchanger[J]. Applied Thermal Engineering, 2017, 125: 1414–1425. doi: 10.1016/j.applthermaleng.2017.07.115
|
[12] |
PROMVONGE P, SKULLONG S. Heat transfer augmenta-tion in solar receiver heat exchanger with hole-punched wings[J]. Applied Thermal Engineering, 2019, 155: 59–69. doi: 10.1016/j.applthermaleng.2019.03.132
|
[13] |
BAISSI M T, BRIMA A, AOUES K, et al. Thermal behavior in a solar air heater channel roughened with delta-shaped vortex generators[J]. Applied Thermal Engineering, 2020, 165: 113563. doi: 10.1016/j.applthermaleng.2019.03.134
|
[14] |
ÜNAL U O, ATLAR M. An experimental investigation into the effect of vortex generators on the near-wake flow of a circular cylinder[J]. Experiments in Fluids, 2010, 48(6): 1059–1079. doi: 10.1007/s00348-009-0791-6
|
[15] |
车翠翠, 田茂诚. 圆管内置梯形翼片的流场特性PIV实验[J]. 化工学报, 2013, 64(11): 3976–3984. DOI: 10.3969/j.issn.0438-1157.2013.11.013
CHE C C, TIAN M C. PIV experiment on flow disturbance characteristics of embedded trapezoid winglets in tube[J]. CIESC Journal, 2013, 64(11): 3976–3984. doi: 10.3969/j.issn.0438-1157.2013.11.013
|
[16] |
URKIOLA A, FERNANDEZ-GAMIZ U, ERRASTI I, et al. Computational characterization of the vortex generated by a Vortex Generator on a flat plate for different vane angles[J]. Aerospace Science and Technology, 2017, 65: 18–25. doi: 10.1016/j.ast.2017.02.008
|
[17] |
LEMENAND T, HABCHI C, DELLA VALLE D, et al. Vorticity and convective heat transfer downstream of a vortex generator[J]. International Journal of Thermal Sciences, 2018, 125: 342–349. doi: 10.1016/j.ijthermalsci.2017.11.021
|
[18] |
POURHEDAYAT S, PESTEEI S M, GHALINGHIE H E, et al. Thermal-exergetic behavior of triangular vortex genera-tors through the cylindrical tubes[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119406. doi: 10.1016/j.ijheatmasstransfer.2020.119406
|
[19] |
张奕, 潘翀, 窦建宇, 等. 微型涡流发生器影响下的湍流边界层流场与摩阻特性[J]. 实验流体力学, 2023, 37(4): 48–58. DOI: 10.11729/syltlx20230027
ZHANG Y, PAN C, DOU J Y, et al. Flowfield and friction characteristics downstream of mirco vortex generator in turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 48–58. doi: 10.11729/syltlx20230027
|
[20] |
YANG W, MENG H, SHENG J. Dynamics of hairpin vortices generated by a mixing tab in a channel flow[J]. Experiments in Fluids, 2001, 30(6): 705–722. doi: 10.1007/s003480000252
|
[21] |
DONG S C, MENG H. Flow past a trapezoidal tab[J]. Journal of Fluid Mechanics, 2004, 510: 219–242. doi: 10.1017/s0022112004009486
|
[22] |
HAMED A M, PAGAN-VAZQUEZ A, KHOVALYG D, et al. Vortical structures in the near wake of tabs with various geometries[J]. Journal of Fluid Mechanics, 2017, 825: 167–188. doi: 10.1017/jfm.2017.384
|
[23] |
GUO Z Y, LI D Y, WANG B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221–2225. doi: 10.1016/s0017-9310(97)00272-x
|
[24] |
WU J M, TAO W Q. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A: verification of field synergy principle[J]. International Journal of Heat and Mass Transfer, 2008, 51(5-6): 1179–1191. doi: 10.1016/j.ijheatmasstransfer.2007.03.032
|
[25] |
徐志明, 韩志敏, 王景涛, 等. 卧式半圆柱型涡流发生器的传热与阻力特性及场协同理论分析[J]. 机械工程学报, 2016, 52(2): 166–172. DOI: 10.3901/JME.2016.02.166
XU Z M, HAN Z M, WANG J T, et al. Heat transfer and flow resistance characteristics of the horizontal semi-cylindrical vortex generators and analysis with field synergy theory[J]. Journal of Mechanical Engineering, 2016, 52(2): 166–172. doi: 10.3901/JME.2016.02.166
|
[26] |
WANG W, SUN X J, GAO Y, et al. Enhanced heat transfer under the influence of coherent structure induced by arc vortex generator in square pipe flows[J]. Thermal Science, 2019, 23(3 Part A): 1379-1386. doi: 10.2298/tsci180605136w
|
[27] |
刘鹏, 郑年本, 王新婷, 等. 内插锥形片强化传热管数值模拟与PIV实验研究[J]. 工程热物理学报, 2019, 40(2): 382–388.
LIU P, ZHENG N B, WANG X T, et al. Numerical and PIV experimental study on the performance of heat exchange tube with conical strips[J]. Journal of Engineering Thermo-physics, 2019, 40(2): 382–388.
|
[1] | LIU Yang, ZHENG Xu, HU Guoqing. The friction coefficient and diffusion of sub-micro particles straddling a monolayer[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 11-20. DOI: 10.11729/syltlx20230010 |
[2] | XU Zheng, LIU Ri, WANG Tianhao, CHI Zhendong, WANG Zuobin, LI Li. Simulation and fabrication of bionic sharkskin composite micro-nano wind resistance reduction structure[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 107-114. DOI: 10.11729/syltlx20220002 |
[3] | ZHENG Xu, Zhanhua SILBER-LI. Research progress of slip on the liquid-solid interface[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 80-88. DOI: 10.11729/syltlx20190164 |
[4] | YAO Zhaohui, ZHANG Jingxian, HAO Pengfei. Effect of surface micro/nano-structure on gas-water interface stability and flow drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 73-79. DOI: 10.11729/syltlx20190161 |
[5] | SHEN Feng, YAN Chengjin, LI Mengqi, JI Deru, LIU Zhaomiao. Micro-PIV study on flow field characteristics of droplets in a microcavity[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 67-72. DOI: 10.11729/syltlx20190117 |
[6] | ZHANG Yong-sheng, WANG Jin-hua. The flowrate measurement in a rectangular microchannel by micro-PIV[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(2): 92-95. DOI: 10.3969/j.issn.1672-9897.2011.02.019 |
[7] | LI Lu-jun, KANG Qi, DUAN Li, HU Liang. Interface tension effect in two-layer Bénard-Marangoni convection[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(2): 5-9. DOI: 10.3969/j.issn.1672-9897.2009.02.002 |
[8] | WANG Jian, HAO Peng-fei, HE Feng. PIV measurement of flow field in a trapezium-cross section micro-channel[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 94-98. DOI: 10.3969/j.issn.1672-9897.2005.03.019 |
[9] | WANG Fei, WANG Jian, HE Feng. Design, fabrication and micro-PIV measurement on no-moving-part micro-pump[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 67-72. DOI: 10.3969/j.issn.1672-9897.2005.03.014 |
[10] | Experimental measurements of the turbulence characteristics under sheared air-water interfaces[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(2): 86-90. DOI: 10.3969/j.issn.1672-9897.2004.02.019 |