Citation: | CHEN J Z, TIAN H P, DING J F, et al. Experimental study on non-contact measurement of spatio-temporal signals in wall turbulence friction[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 66-74. DOI: 10.11729/syltlx20230109 |
The generation mechanism and experimental measurement of wall turbulence frictional resistance are critical topics in the fundamental research of wall turbulence, which are related to flow drag reduction and transformative engineering technologies. The migration and evolution of complex coherent structures in wall turbulence cause intense momentum exchange between the inner and outer regions. This leads to spatiotemporal variations in the velocity gradient of the viscous sublayer. Local frictional resistance is correlated with the spatiotemporal changes in these coherent structures. Few experimental measurement techniques currently exist that can accurately and simultaneously measure the spatio-temporal signals of the friction drag and the associated evolution of turbulent structures. As a non-contact flow field measurement method, the Particle Image Velocimetry (PIV) has been increasingly expected to excel in frictional resistance measurement. This paper developed an Adjustable Spatio-Temporal Resolution Cross Correlation (ASTRCC) algorithm, based on high spatiotemporal resolution 2D2C TRPIV time-series flow field particle image data. Wall frictional resistance with high spatiotemporal resolution was calculated using this algorithm. The spatial fluctuations and temporal delays of frictional resistance were investigated. From the perspective of spatiotemporal evolution, the spatiotemporal correlation between coherent structures in wall turbulence and local flow field frictional resistance was explored. The correctness of this method was validated.
[1] |
许春晓. 壁湍流相干结构和减阻控制机理[J]. 力学进展, 2015, 45(1): 111–140. DOI: 10.6052/1000-0992-15-006
XU C X. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45(1): 111–140. doi: 10.6052/1000-0992-15-006
|
[2] |
王轩, 范子椰, 陈乐天, 等. 流向凹曲率壁面湍流边界层的TRPIV实验研究[J]. 实验流体力学, 2022, 36(6): 1–9. DOI: 10.11729/syltlx20210084
WANG X, FAN Z Y, CHEN L T, et al. Experimental study of TRPIV for turbulent boundary layer of longitudinal concave curvature wall[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 1–9. doi: 10.11729/syltlx20210084
|
[3] |
TANG Z Q, MA X Y, JIANG N, et al. Local dynamic perturbation effects on the scale interactions in wall turbulence[J]. Journal of Turbulence, 2021, 22(3): 208–230. doi: 10.1080/14685248.2020.1864388
|
[4] |
TANG Z Q, JIANG N. The effect of a synthetic input on small-scale intermittent bursting events in near-wall turbulence[J]. Physics of Fluids, 2020, 32(1): 015110. doi: 10.1063/1.5129042
|
[5] |
高南, 刘玄鹤. 实用化壁面切应力测量技术的综述与展望[J]. 空气动力学学报, 2023, 41(3): 1–24. DOI: 10.7638/kqdlxxb-2021.0450
GAO N, LIU X H. A review of wall-shear-stress measurement techniques for practical applictions[J]. Acta Aerodynamica Sinica, 2023, 41(3): 1–24. doi: 10.7638/kqdlxxb-2021.0450
|
[6] |
严宇超, 姜澄宇, 马炳和, 等. 壁面剪应力标定方法研究综述[J]. 实验流体力学, 2017, 31(2): 20–25. DOI: 10.11729/syltlx20170007
YAN Y C, JIANG C Y, MA B H, et al. Review of the calibration methods and devices for wall shear stress[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 20–25. doi: 10.11729/syltlx20170007
|
[7] |
赵荣娟, 吕治国, 黄军, 等. 基于压电敏感元件的摩阻天平设计[J]. 空气动力学学报, 2018, 36(4): 555–560. DOI: 10.7638/kqdlxxb-2016.0112
ZHAO R J, LÜ Z G, HUANG J, et al. Design of skin friction balance based on piezoelectric ceramics[J]. Acta Aerodynamica Sinica, 2018, 36(4): 555–560. doi: 10.7638/kqdlxxb-2016.0112
|
[8] |
BAARS W J, SQUIRE D T, TALLURU K M, et al. Wall-drag measurements of smooth- and rough-wall turbulent boundary layers using a floating element[J]. Experiments in Fluids, 2016, 57(5): 90. doi: 10.1007/s00348-016-2168-y
|
[9] |
DRIVER D M. Application of oil-film interferometry skin-friction measurement to large wind tunnels[J]. Experiments in Fluids, 2003, 34(6): 717–725. doi: 10.1007/s00348-003-0613-1
|
[10] |
GUBIAN P A, STOKER J, MEDVESCEK J, et al. Evolution of wall shear stress with Reynolds number in fully developed turbulent channel flow experiments[J]. Physical Review Fluids, 2019, 4(7): 074606. doi: 10.1103/PhysRevFluids.4.074606
|
[11] |
张伟, 葛耀君, 杨泳昕. 粒子图像测速技术互相关算法研究进展. [J] 力学进展, 2007, 37(3): 443-452.
ZHANG W, GE Y J, YANG Y X. Research progress of cross correlation algorithms in particle image velocimetry[J]. Advances in Mechanics, 2007, 37(3): 443-452.
|
[12] |
王康俊, 白建侠, 唐湛棋, 等. 用平均速度剖面法测量湍流边界层壁面摩擦速度的对比研究[J]. 实验力学, 2019, 34(2): 209–216. DOI: 10.7520/1001-4888-17-190
WANG K J, BAI J X, TANG Z Q, et al. Comparative study of turbulent boundary layer wall friction velocity measured by average velocity profile method[J]. Journal of Experimental Mechanics, 2019, 34(2): 209–216. doi: 10.7520/1001-4888-17-190
|
[13] |
ZHU Y D, JIANG X Y, ZHANG Y C, et al. Iterative PIV interrogation for complex wall-bounded flows[J]. Measurement Science and Technology, 2019, 30(9): 095302. doi: 10.1088/1361-6501/ab20f4
|
[14] |
NGUYEN C V, WELLS J C. Direct measurement of fluid velocity gradients at a wall by PIV image processing with stereo reconstruction[J]. Journal of Visualization, 2006, 9(2): 199–208. doi: 10.1007/BF03181763
|
[15] |
KÄHLER C J, SCHOLZ U, ORTMANNS J. Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV[J]. Experiments in Fluids, 2006, 41(2): 327–341. doi: 10.1007/s00348-006-0167-0
|
[16] |
许德辰, 张悦, 刘欣乐, 等. 基于粒子追踪测速的壁面摩擦应力测量[J]. 实验流体力学, 2022, 36(2): 131–138. DOI: 10.11729/syltlx20210156
XU D C, ZHANG Y, LIU X L , et al. Measurement of wall-shear stress via micro-particle tracking velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 131–138. doi: 10.11729/syltlx20210156
|
[17] |
WILLERT C E. High-speed particle image velocimetry for the efficient measurement of turbulence statistics[J]. Experiments in Fluids, 2015, 56(1): 17. doi: 10.1007/s00348-014-1892-4
|
[18] |
SHEN J Q, PAN C, WANG J J. Accurate measurement of wall skin friction by single-pixel ensemble correlation[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(7): 1352-1362. doi: 10.1007/s11433-014-5462-9
|
[19] |
OKAMOTO K, NISHIO S, SAGA T, et al. Standard images for particle-image velocimetry[J]. Measurement Science and Technology, 2000, 11(6): 685–691. doi: 10.1088/0957-0233/11/6/311
|
[20] |
NOBACH H, HONKANEN M. Two-dimensional Gaussian regression for sub-pixel displacement estimation in particle image velocimetry or particle position estimation in particle tracking velocimetry[J]. Experiments in Fluids, 2005, 38(4): 511–515. doi: 10.1007/s00348-005-0942-3
|
[21] |
申俊琦, 王建杰, 潘翀. 平板湍流边界层瞬时摩擦阻力的光学测量和统计分析[J]. 气体物理, 2020, 5(5): 13–23. DOI: 10.19527/j.cnki.2096-1642.0873
SHEN J Q, WANG J J, PAN C. Optical measurement and statistical analysis of instantaneous wall-shear stress in a turbulent boundary layer[J]. Physics of Gases, 2020, 5(5): 13–23. doi: 10.19527/j.cnki.2096-1642.0873
|
[22] |
MARUSIC I, ADRIAN R J. The eddies and scales of wall turbulence[M]//Ten Chapters in Turbulence. Cambridge: Cambridge University Press, 2012: 176-220. doi: 10.1017/cbo9781139032810.006
|
[23] |
樊星, 姜楠. 用平均速度剖面法测量壁湍流摩擦阻力[J]. 力学与实践, 2005, 27(1): 28–30. DOI: 10.3969/j.issn.1000-0879.2005.01.007
FAN X, JIANG N. Skin friction measurement in turbulent boundary layer by mean velocity profile method[J]. Mechanics in Engineering, 2005, 27(1): 28–30. doi: 10.3969/j.issn.1000-0879.2005.01.007
|
[24] |
WANG J J, PAN C, WANG J J. Characteristics of fluctuating wall-shear stress in a turbulent boundary layer at low-to-moderate Reynolds number[J]. Physical Review Fluids, 2020, 5(7): 074605. doi: 10.1103/PhysRevFluids.5.074605
|
[25] |
PAN C, KWON Y. Extremely high wall-shear stress events in a turbulent boundary layer[J]. Journal of Physics: Conference Series, 2018, 1001: 012004. doi: 10.1088/1742-6596/1001/1/012004
|
[26] |
HERPIN S, STANISLAS M, FOUCAUT J M, et al. Influence of the Reynolds number on the vortical structures in the logarithmic region of turbulent boundary layers[J]. Journal of Fluid Mechanics, 2013, 716: 5–50. doi: 10.1017/jfm.2012.491
|
[27] |
王康俊. 湍流边界层相干结构特性及其主动控制减阻机理的实验研究[D]. 天津: 天津大学, 2021.
WANG K J. Experimental study on coherent structure characteristics of turbulent boundary layer and its active control drag reduction mechanism[D]. Tianjin: Tianjin University, 2021.
|
[28] |
TIAN H P, YI X R, XU F, et al. Lagrangian-based spatial-temporal topological study on the evolution and migration of coherent structures in wall turbulence[J]. Acta Mechanica Sinica, 2022, 38(1): 321465. doi: 10.1007/s10409-021-09006-1
|
[29] |
李鹏, 单桂华, 迟学斌. 时变流场的有限时间李雅普诺夫指数(FTLE)并行算法研究[J]. 科研信息化技术与应用, 2014, 5(2): 43–50. DOI: 10.11871/j.issn.1674-9480.2014.02.005
LI P, SHAN G H, CHI X B. Parallel algorithm of FTLE computation for time-varying flow field[J]. e-Science Technology & Application, 2014, 5(2): 43–50. doi: 10.11871/j.issn.1674-9480.2014.02.005
|
1. |
陆逸然,王晋军. 高效合成射流激励器研究进展及展望. 力学进展. 2024(01): 61-85 .
![]() |