WANG Z C, YAN Y, FAN W, et al. The experimental study of the comparison between propagation frequency of rotating detonation waves and combustion chamber tangential acoustic frequency[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 68-77. DOI: 10.11729/syltlx20230076
Citation: WANG Z C, YAN Y, FAN W, et al. The experimental study of the comparison between propagation frequency of rotating detonation waves and combustion chamber tangential acoustic frequency[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 68-77. DOI: 10.11729/syltlx20230076

The experimental study of the comparison between propagation frequency of rotating detonation waves and combustion chamber tangential acoustic frequency

More Information
  • Received Date: May 23, 2023
  • Revised Date: July 23, 2023
  • Accepted Date: September 12, 2023
  • To verify the relationship between rotating detonation waves and the intrinsic high-frequency tangential instability of the combustor, this experimental study has been conducted in an annular combustor with the width of 11 mm and a hollow combustor. Oxygen-enriched air, with the volume fractions of 33%, 50% and 100%, and ethylene have been used as propellants. In the annular combustor, three propagation modes have been observed as the different volume fractions of the oxygen-enriched air have been used. The dual-wave collision mode has been obtained as the oxidizer of 33% O2 has been utilized. In this propagation mode, the velocity deficit is around 37%–63% and the values of the dual-wave propagation frequency are lower than the intrinsic second order tangential frequency. As the volume fraction of the oxidizer increasing from 50% to 100%, the single detonation mode and two detonation waves mode have been obtained. The velocity deficit is around 14%–40% for the unidirectional propagation detonations. The propagation frequency values of the single detonation mode and two detonation waves mode are obviously higher than the value of the intrinsic first order and second order tangential frequency, respectively. In the hollow combustor, the single detonation mode has been obtained when the oxidizer of 50% O2 has been adopted. It is observed that the propagation velocities are higher than the theoretical C−J velocity and the propagation frequency values are higher than the intrinsic first order tangential frequency in most cases. In summary, the propagation frequency values calculated from different propagation modes of rotating detonation waves are obviously different from the intrinsic tangential frequency of the combustor and this result indicates that the discrepancy between rotating detonation waves and high-frequency tangential instabilities is evident.

  • [1]
    MA J Z, LUAN M Y, XIA Z J, et al. Recent progress, development trends, and consideration of continuous detonation engines[J]. AIAA Journal, 2020, 58(12): 4976–5035. doi: 10.2514/1.J058157
    [2]
    计自飞, 李天琦, 张会强. 吸气式旋转爆震组合循环发动机性能[J]. 火箭推进, 2021, 47(6): 86–92.

    JI Z F, LI T Q, ZHANG H Q. Performance analysis of rotating detonative airbreathing combined cycle engine[J]. Journal of Rocket Propulsion, 2021, 47(6): 86–92.
    [3]
    王超, 郑榆山, 蔡建华, 等. 碳氢燃料旋转爆震直连试验研究[J]. 实验流体力学, 2022, 36(4): 1–9.

    WANG C, ZHENG Y S, CAI J H, et al. Direct connected experimental research on hydrocarbon-fueled rotating detonation[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 1–9.
    [4]
    宫继双, 周林, 张义宁, 等. 基于特征线理论的旋转爆震流场结构特征研究[J]. 实验流体力学, 2019, 33(1): 89–96. DOI: 10.11729/syltlx20180072

    GONG J S, ZHOU L, ZHANG Y N, et al. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89–96. doi: 10.11729/syltlx20180072
    [5]
    袁雪强, 蒋露欣, 张多, 等. 爆震波通过环形通道传播模式试验研究[J]. 火箭推进, 2021, 47(6): 101–110. DOI: 10.3969/j.issn.1672-9374.2021.06.012

    YUAN X Q, JIANG L X, ZHANG D, et al. Experimental study on propagation mode of detonation wave in annular channel[J]. Journal of Rocket Propulsion, 2021, 47(6): 101–110. doi: 10.3969/j.issn.1672-9374.2021.06.012
    [6]
    严宇, 胡洪波, 洪流, 等. 自燃推进剂旋转爆震燃烧实验研究[J]. 推进技术, 2018, 39(9): 1986–1993.

    YAN Y, HU H B, HONG L, et al. Experimental investigation on rotated detonation combustion of hypergolic propellants[J]. Journal of Propulsion Technology, 2018, 39(9): 1986–1993.
    [7]
    焦中天, 王永佳, 李伟, 等. 燃料喷孔数对非预混旋转爆震起爆过程的影响[J]. 火箭推进, 2021, 47(5): 22–34. DOI: 10.3969/j.issn.1672-9374.2021.05.003

    JIAO Z T, WANG Y J, LI W, et al. Effects of the number of fuel injection orifices on rotating detonation initiation process under non-premixed conditions[J]. Journal of Rocket Propulsion, 2021, 47(5): 22–34. doi: 10.3969/j.issn.1672-9374.2021.05.003
    [8]
    TANG X M, WANG J P, SHAO Y T. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J]. Combustion and Flame, 2015, 162(4): 997–1008. doi: 10.1016/j.combustflame.2014.09.023
    [9]
    杨立军, 富庆飞. 液体火箭发动机推力室设计[M]. 北京: 北京航空航天大学出版社, 2013.
    [10]
    VOITSEKHOVSKII B V. Stationary spin detonation[J]. Soviet Journal of Applied Mechanics and Technical Physics, 1960, 3: 157–164.
    [11]
    BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonations[J]. Journal of Propulsion and Power, 2006, 22(6): 1204–1216. doi: 10.2514/1.17656
    [12]
    BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Initiation of detonation of fuel-air mixtures in a flow-type annular combustor[J]. Combustion, Explosion, and Shock Waves, 2014, 50(2): 214–222. doi: 10.1134/s0010508214020130
    [13]
    ZHANG H L, LIU W D, LIU S J. Experimental investigations on H2/air rotating detonation wave in the hollow chamber with Laval nozzle[J]. International Journal of Hydrogen Energy, 2017, 42(5): 3363–3370. doi: 10.1016/j.ijhydene.2016.12.038
    [14]
    LIU S J, LIU W D, WANG Y, et al. Free jet test of continuous rotating detonation ramjet engine[C]//Proc of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. 2017: 2282. doi: 10.2514/6.2017-2282
    [15]
    ANAND V, GUTMARK E. Rotating detonation combustors and their similarities to rocket instabilities[J]. Progress in Energy and Combustion Science, 2019, 73: 182–234. doi: 10.1016/j.pecs.2019.04.001
    [16]
    ANAND V, GEORGE A S, DRISCOLL R, et al. Longitudinal pulsed detonation instability in a rotating detonation combustor [J]. Experimental Thermal and Fluid Science, 2016, 77: 212-225. doi: 10.1016/j.expthermflusci.2016.04.025
    [17]
    PENG H Y, LIU W D, LIU S J, et al. Effects of cavity location on ethylene–air continuous rotating detonation in a cavity-based annular combustor[J]. Combustion Science and Technology, 2021, 193(16): 2761–2782. doi: 10.1080/00102202.2020.1760255
    [18]
    RANKIN B A, RICHARDSON D R, CASWELL A W, et al. Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine[J]. Combustion and Flame, 2017, 176: 12–22. doi: 10.1016/j.combustflame.2016.09.020
    [19]
    ZHONG Y P, WU Y, JIN D, et al. Investigation of rotating detonation fueled by the pre-combustion cracked kerosene[J]. Aerospace Science and Technology, 2019, 95: 105480. doi: 10.1016/j.ast.2019.105480
    [20]
    MENG H L, XIAO Q, FENG W K, et al. Air-breathing rotating detonation fueled by liquid kerosene in cavity-based annular combustor[J]. Aerospace Science and Technology, 2022, 122: 107407. doi: 10.1016/j.ast.2022.107407
    [21]
    LIN W, TONG Y H, LIN Z Y, et al. Propagation mode analysis on H2–air rotating detonation waves in a hollow combustor[J]. AIAA Journal, 2020, 58(12): 5052–5062. doi: 10.2514/1.J058254
    [22]
    张海龙. 液体火箭发动机切向不稳定燃烧的旋转爆震机理研究[D]. 长沙: 国防科技大学, 2017.

    ZHANG H L. The rotating detonation mechanism of tangential combustion instability in a liquid rocket engine[D]. Changsha: National University of Defense Technology, 2017.
    [23]
    XIE Q F, WEN H C, LI W H, et al. Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition[J]. Energy, 2018, 151: 408-419. doi: 10.1016/j.energy.2018.03.062
    [24]
    王致程, 严宇, 王可, 等. 燃烧室宽度对煤油旋转爆震波传播模态的影响[J]. 推进技术, 2021, 42(4): 842–850.

    WANG Z C, YAN Y, WANG K, et al. Effects of combustor width on propagation modes of rotating detonation waves utilizing liquid kerosene[J]. Journal of Propulsion Technology, 2021, 42(4): 842–850.
    [25]
    WANG Z C, WANG K, ZHAO M H, et al. Experimental investigation on the propagation characteristics of detonations in a semi-confined straight channel[J]. Experimental Thermal and Fluid Science, 2021, 123: 110329. doi: 10.1016/j.expthermflusci.2020.110329
    [26]
    赵明皓, 王可, 王致程, 等. 点火方式对空桶型旋转爆震燃烧室起爆特性的影响[J]. 航空学报, 2022, 43(1): 124870.

    ZHAO M H, WANG K, WANG Z C, et al. Effects of ignition on initiation characteristics of hollow rotating detonation combustor[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124870.
    [27]
    KNYSTAUTAS R, LEE J H, GUIRAO C M. The critical tube diameter for detonation failure in hydrocarbon-air mixtures[J]. Combustion and Flame, 1982, 48: 63–83. doi: 10.1016/0010-2180(82)90116-x
    [28]
    赵明皓, 王可, 王致程, 等. 燃烧室构型对旋转爆震波传播特性影响的实验研究[J]. 航空学报, 2022, 43(5): 125372.

    ZHAO M H, WANG K, WANG Z C, et al. Experimental study on the propagation characteristics of rotating detonation waves in different combustor configurations[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 125372.
    [29]
    ZHOU R, WANG J P. Numerical investigation of shock wave reflections near the head ends of rotating detonation engines[J]. Shock Wave, 2013, 23: 461–472. doi: 10.1007/s00193-013-0440-0

Catalog

    Article Metrics

    Article views (93) PDF downloads (30) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日