Turn off MathJax
Article Contents
YU S W, DU Y L, CAI J S. Effect of rectangular nozzle exit aspect ratioon flow field and acoustic field[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 1-12 doi: 10.11729/syltlx20230063
Citation: YU S W, DU Y L, CAI J S. Effect of rectangular nozzle exit aspect ratioon flow field and acoustic field[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 1-12 doi: 10.11729/syltlx20230063

Effect of rectangular nozzle exit aspect ratioon flow field and acoustic field

doi: 10.11729/syltlx20230063
  • Received Date: 2023-05-04
  • Accepted Date: 2023-08-21
  • Rev Recd Date: 2023-08-08
  • Available Online: 2023-12-18
  • To investigate the influence of the aspect ratio on the flow field and acoustic field of a rectangular nozzle, study has been conducted using DES/FW–H hybrid algorithm on two different aspect ratios of rectangular supersonic fully expanded jet nozzles. The influence of the aspect ratio on flow dynamics and noise of the jet has been analyzed. Firstly, multiple flow field variables were compared and analyzed to verify the feasibility of numerical simulation methods. Differences were observed in the pressure changes on the inner wall surface near the outlet for different aspect ratios, with the larger aspect ratio exhibiting faster pressure changes. Also, it was found that the velocity decreases more rapidly with distance from the outlet on the short axis of the lip, while on the long axis of the lip, the velocity decreases slowly. Next, relating the aspect ratio of the nozzle exit to the jet noise field, and comparing existing noise experimental data with computed data, it was found that in all angles, the maximum difference between the experimental and computed total sound pressure level was 2.6 dB (AR = 3) and 4 dB (AR = 1.5). Increasing the aspect ratio could reduce the total sound pressure level upstream. Furthermore, changes in the shear layer thickness under different aspect ratios were analyzed, and the impact of these changes on the jet noise was studied. The results reveal that increasing the aspect ratio would increase the shear layer thickness and shift the rapid expansion location of the shear layer and high-frequency noise sources upstream. Finally, the phase velocities of specific frequency noise at the lip of the exit were compared for different aspect ratios, revealing a significant reduction in the phase velocity along the long axis of the exit lip with increasing aspect ratio, which affects the angle of the near-field noise radiation.
  • loading
  • [1]
    TSUTSUMI S, TAKAKI R, SHIMA E, et al. Generation and propagation of pressure waves from H-IIA launch vehicle at lift-off[C]//Proceedings of the 46th AIAA Aero-space Sciences Meeting and Exhibit. 2008. doi: 10.2514/6.2008-390
    [2]
    MARTENS S, SPYROPOULOS J T. Practical jet noise reduction for tactical aircraft[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. 2010. doi: 10.1115/GT2010-23699
    [3]
    邹学锋, 潘凯, 燕群, 等. 多场耦合环境下高超声速飞行器结构动强度问题综述[J]. 航空科学技术, 2020, 31(12): 3–15. doi: 10.19452/j.issn1007-5453.2020.12.001

    ZOU X F, PAN K, YAN Q, et al. Overview of dynamic strength of hypersonic vehicle structure in multi-field coupling environment[J]. Aeronautical Science & Techno-logy, 2020, 31(12): 3–15. doi: 10.19452/j.issn1007-5453.2020.12.001
    [4]
    CLARKSON B. Review of sonic fatigue technology[R]. NASA-CR-4587, 1994.
    [5]
    IGNATIUS J K, SATHIYAVAGEESWARAN S, CHAKRA-VARTHY S R. Hot-flow simulation of aeroacoustics and suppression by water injection during rocket liftoff[J]. AIAA Journal, 2015, 53(1): 235–245. doi: 10.2514/1.j053078
    [6]
    VAUGHN A B, NEILSEN T B, GEE K L, et al. Broadband shock-associated noise from a high-performance military aircraft[J]. The Journal of the Acoustical Society of America, 2018, 144(3): EL242–EL247. doi: 10.1121/1.5055392
    [7]
    赵雯. 基于伴随方法的矩形喷口湍流混合噪声空间模态分析[J]. 航空科学技术, 2021, 32(7): 27–31. doi: 10.19452/j.issn1007-5453.2021.07.004

    ZHAO W. Spatial model analysis on rectangular jet turbulence noise with adjoint method[J]. Aeronautical Science & Technology, 2021, 32(7): 27–31. doi: 10.19452/j.issn1007-5453.2021.07.004
    [8]
    闫国华, 汪霁洁. 基于多物理场的涡扇发动机尾喷口近场噪声模拟研究[J]. 航空科学技术, 2018, 29(12): 29–33. doi: 10.19452/j.issn1007-5453.2018.12.029

    YAN G H, WANG J J. Simulation study on the near field noise of turbofan engine tail nozzle based on multiphysical field[J]. Aeronautical Science & Technology, 2018, 29(12): 29–33. doi: 10.19452/j.issn1007-5453.2018.12.029
    [9]
    HENDERSON B. Fifty years of fluidic injection for jet noise reduction[J]. International Journal of Aeroacoustics, 2010, 9(1-2): 91–122. doi: 10.1260/1475-472x.9.1-2.91
    [10]
    方昌德. 飞机推力矢量技术发展综述[J]. 航空科学技术, 1998, 9(2): 10–12.

    FANG C D. Developing status of thrust vectoring control technology[J]. Aeronautical Science and Technology, 1998, 9(2): 10–12.
    [11]
    COLONIUS T, LELE S K. Computational aeroacoustics: progress on nonlinear problems of sound generation[J]. Progress in Aerospace Sciences, 2004, 40(6): 345–416. doi: 10.1016/j.paerosci.2004.09.001
    [12]
    FREUND J B, LELE S K, MOIN P. Numerical simulation of a Mach 1.92 turbulent jet and its sound field[J]. AIAA Journal, 2000, 38(11): 2023–2031. doi: 10.2514/2.889
    [13]
    SHARAN N, BELLAN J R. Direct numerical simulation of high-pressure free jets[C]//Proceedings of the AIAA Scitech 2021 Forum. 2021. DOI: 10.2514/6.2021-0550
    [14]
    MILLER S A. Towards a comprehensive model of jet noise using an acoustic analogy and steady RANS solutions[C]//Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference. 2013. doi: 10.2514/6.2013-2278
    [15]
    BAI B H, LI X D, CHEN H X. A semi-empirical prediction method for the fine scale turbulence mixing noise[C]//Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference. 2019. doi: 10.2514/6.2019-2757
    [16]
    MANKBADI R R, HAYER M E, POVINELLI L A. Structure of supersonic jet flow and its radiated sound[J]. AIAA Journal, 1994, 32(5): 897–906. doi: 10.2514/3.12072
    [17]
    DEBONIS J R, SCOTT J N. Large-eddy simulation of a turbulent compressible round jet[J]. AIAA Journal, 2002, 40: 1346–1354. doi: 10.2514/3.15202
    [18]
    BODONY D, RYU J, RAY P, et al. Investigating broadband shock-associated noise of axisymmetric jets using large-eddy simulation[C]//Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). 2006. doi: 10.2514/6.2006-2495
    [19]
    MENDEZ S, SHOEYBI M, SHARMA A, et al. Large-eddy simulations of perfectly expanded supersonic jets using an unstructured solver[J]. AIAA Journal, 2012, 50(5): 1103–1118. doi: 10.2514/1.j051211
    [20]
    LO S C, AIKENS K M, BLAISDELL G A, et al. Numerical investigation of 3-D supersonic jet flows using large-eddy simulation[J]. International Journal of Aeroacoustics, 2012, 11(7-8): 783–812. doi: 10.1260/1475-472x.11.7-8.783
    [21]
    SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]// Proc of the Advances in DNS/LES. 1997.
    [22]
    FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1969, 264(1151): 321–342. doi: 10.1098/rsta.1969.0031
    [23]
    BRENTNER K S, FARASSAT F. Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces[J]. AIAA Journal, 1998, 36(8): 1379–1386. doi: 10.2514/2.558
    [24]
    BRIDGES J. Acoustic measurements of rectangular nozzles with bevel[C]//Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). 2012. doi: 10.2514/6.2012-2252
    [25]
    KANJERE K, DESVARD L, NICOLAS F, et al. Empirical modelling of noise from high aspect ratio rectangular jets[J]. International Journal of Heat and Fluid Flow, 2016, 62: 1–9. doi: 10.1016/j.ijheatfluidflow.2016.09.004
    [26]
    FAGHANI E, MADDAHIAN R, FAGHANI P, et al. Numerical investigation of turbulent free jet flows issuing from rectangular nozzles: the influence of small aspect ratio[J]. Archive of Applied Mechanics, 2010, 80(7): 727–745. doi: 10.1007/s00419-009-0340-z
    [27]
    SMAGORINSKY J. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3): 99–164. doi:10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2
    [28]
    SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows[C]//Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. 1992. doi: 10.2514/6.1992-439
    [29]
    VALENTICH G, UPADHYAY P, KUMAR R. Mixing characteristics of a moderate aspect ratio screeching supersonic rectangular jet[J]. Experiments in Fluids, 2016, 57(5): 71. doi: 10.1007/s00348-016-2153-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(4)

    Article Metrics

    Article views (91) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return