Citation: | GAO K, KUAI H Y, HAUNG S, et al. Excitation and global calibration of duct modes with high orders and complex mixtures inside a cylindrical duct with flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 37-45. DOI: 10.11729/syltlx20230057 |
[1] |
乔渭阳, 王良锋. 航空发动机气动声学[M]. 2版. 西安: 西北工业大学出版社, 2016.
|
[2] |
BU H X, HUANG X, ZHANG X. An overview of testing methods for aeroengine fan noise[J]. Progress in Aerospace Sciences, 2021, 124: 100722. doi: 10.1016/j.paerosci.2021.100722
|
[3] |
SEINER J M, REETHOF G. Design and development of the spinning mode synthesizer[M]. Washington: National Aeronautics and Space Administration, 1973.
|
[4] |
BERTSCH L, SNELLEN M, ENGHARDT L, et al. Aircraft noise generation and assessment: executive summary[J]. CEAS Aeronautical Journal, 2019, 10(1): 3–9. doi: 10.1007/s13272-019-00384-3
|
[5] |
BACCOUCHE R, MOREAU S, BEN M. Test of single degree of freedom acoustic treatment impedance models for multimodal acoustic propagation in duct with flow[J]. The Journal of the Acoustical Society of America, 2017, 141(6): 4168–4178. doi: 10.1121/1.4983653
|
[6] |
张涛, 林大楷, 张颖哲, 等. 基于模态发生器的进气道风扇噪声及声衬降噪实验[J]. 航空动力学报, 2021, 36(2): 240–248. DOI: 10.13224/j.cnki.jasp.2021.02.003
ZHANG T, LIN D K, ZHANG Y Z, et al. Experiment of intake fan noise and noise reduction of acoustic liner based on mode generator[J]. Journal of Aerospace Power, 2021, 36(2): 240–248. doi: 10.13224/j.cnki.jasp.2021.02.003
|
[7] |
PALUMBO D L. An operations manual for the Spinning Mode Synthesizer in the Langley Aircraft Noise Reduction Laboratory[R]. NASA-CR-165698, 1981.
|
[8] |
BÖHNING P, ARNOLD F, HOLSTE F, et al. Aerodynamic duct mode generator[C]//Proc of the 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). 2007. doi: 10.2514/6.2007-3433
|
[9] |
高翔, 薛东文, 燕群, 等. 涡扇发动机旋转声模态发生与测试试验研究[J]. 科学技术与工程, 2018, 18(23): 128–133. DOI: 10.3969/j.issn.1671-1815.2018.23.018
GAO X, XUE D W, YAN Q, et al. Research on acoustic spinning mode synthesizer and measurement of turbofan engine method validating experiment[J]. Science Technology and Engineering, 2018, 18(23): 128–133. doi: 10.3969/j.issn.1671-1815.2018.23.018
|
[10] |
SUTLIFF D L, JONES M G, NARK D M. In-duct and farfield experimental measurements from the ancf for the purpose of improved broadband liner optimization[C]// Proc of the 20th AIAA/CEAS Aeroacoustics Conference. 2014. doi: 10.2514/6.2014-3231
|
[11] |
MUMCU A, KELLER C, HURFAR C M, et al. An acoustic excitation system for the generation of turbomachinery specific sound fields: part I—design and methodology[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. 2016. doi: 10.1115/GT2016-56020
|
[12] |
HURFAR C M, KELLER C, MUMCU A, et al. An acoustic excitation system for the generation of turbomachinery specific sound fields: part II—experimental verification[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. 2016 doi: 10.1115/GT2016-56969
|
[13] |
薛东文, 燕群, 高翔, 等. 发动机涵道高阶声模态控制技术研究[J]. 计算机仿真, 2019, 36(6): 125–130, 185. DOI: 10.3969/j.issn.1006-9348.2019.06.025
XUE D W, YAN Q, GAO X, et al. The control of high order acoustic modes in engine duct[J]. Computer Simulation, 2019, 36(6): 125–130, 185. doi: 10.3969/j.issn.1006-9348.2019.06.025
|
[14] |
SUTLIFF D L, WALKER B E. Artificial noise systems for parametric studies of turbo-machinery aero-acoustics[J]. International Journal of Aeroacoustics, 2016, 15(1-2): 103–130. doi: 10.1177/1475472x16630851
|
[15] |
ARNOLD F, TAPKEN U, BAUERS R, et al. Turbomachinery exhaust noise radiation experiments - part 1: polar directivity measurements[C]//Proc of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). 2008. doi: 10.2514/6.2008-2857
|
[16] |
黄时春, 英基勇, 高翔, 等. 激发圆形管道内多阶声模态的扬声器阵列控制方法[J]. 声学学报, 2022, 47(4): 521–530. DOI: 10.15949/j.cnki.0371-0025.2022.04.005
HUANG S C, YING J Y, GAO X, et al. A loudspeaker array control method for exciting multi-order acoustic modes in a cylindrical duct[J]. Acta Acustica, 2022, 47(4): 521–530. doi: 10.15949/j.cnki.0371-0025.2022.04.005
|
[17] |
HUANG S, PAN X, YU L, et al. Achieving cylindrical duct modes generation in spinning mode synthesizer via a least-square identification of the global calibration factor[J]. Applied Acoustics, 2022, 186: 108423. doi: 10.1016/j.apacoust.2021.108423
|
[18] |
ALONSO J S, BURDISSO R A. Green's functions for the acoustic field in lined ducts with uniform flow[J]. AIAA Journal, 2007, 45(11): 2677–2687. doi: 10.2514/1.29872
|
[19] |
LOWIS C, JOSEPH P. A focused beamformer technique for separating rotor and stator-based broadband sources[C]//Proc of the 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). 2006. doi: 10.2514/6.2006-2710
|
[20] |
TIKHONOV A. Solution of incorrectly formulated problems and the regularization method[J]. Soviet Math, 1963, 4: 1035–1038.
|
[21] |
黄时春. 圆形管道内复杂声模态的激发与识别[D]. 上海: 上海交通大学, 2021.
|
[22] |
HILL G. Loudspeaker modelling and design: a practical introduction[M]. New York: Routledge, 2019.
|
[1] | YANG Kai, LIU Jichun, CHEN Suyu, ZHU Xinxin, WANG Hui. Calibration results and analysis of thin-film gauges calibrated with the transfer method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 106-111. DOI: 10.11729/syltlx20210129 |
[2] | LI Qiufeng, LI Mi, GAO Xiang, WANG Dingqi. Experimental study on characteristic calibration of separated exhaust system[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 61-69. DOI: 10.11729/syltlx20220056 |
[3] | GAO Nan, LIU Xuanhe. A preliminary study on calibration-free hot-wire anemometry method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 1-8. DOI: 10.11729/syltlx20230004 |
[4] | CHEN Wei, WANG Lei, WU Yue. Application of a calibration-free wavelength modulation spectroscopy in the diagnosis of high-enthalpy flow field[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220099 |
[5] | ZHU Yong, DONG Zhe, PENG Di, LIU Yingzheng. A study of a wide range (1-600 kPa) static calibration method for pressure sensitive paints[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 69-76. DOI: 10.11729/syltlx20200138 |
[6] | LIU Xiang, XIONG Jian, MA Husheng, ZHOU Qiang, CHEN Liusheng, WANG Hongbiao, HUANG Hui, CHEN Zhi. The calibration and image post-processing method research of temperature-sensitive paint[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 53-61. DOI: 10.11729/syltlx20190054 |
[7] | Chen Guangqiang, Dou Xiuxin, Yang Yunjun, Zhou Weijiang, Dou Guohui. Study on calibration of FADS system for air-breathing air-to-air missile[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 89-95. DOI: 10.11729/syltlx20170133 |
[8] | Wu Long, Wang Feng, Le Jialing. A dynamic calibration method for a dynamometric system in impulse combustion facilities[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 51-58. DOI: 10.11729/syltlx20160158 |
[9] | Xia Yunfeng, Hao Siyu, Xu Hua, Cai Zhewei, Zhang Shizhao, Yan Jiechao. Research on the calibration device with temperature control for underwater wall shear stress sensor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 72-77. DOI: 10.11729/syltlx20170025 |
[10] | Yan Yuchao, Jiang Chengyu, Ma Binghe, Xue Xiaohan, Luo Jian. Review of the calibration methods and devices for wall shear stress[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 20-25. DOI: 10.11729/syltlx20170007 |