HU Z, SONG Z H, WANG W T, et al. Infrared molecular tagging velocimetry [J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 41-48. DOI: 10.11729/syltlx20230036
Citation: HU Z, SONG Z H, WANG W T, et al. Infrared molecular tagging velocimetry [J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 41-48. DOI: 10.11729/syltlx20230036

Infrared molecular tagging velocimetry

More Information
  • Received Date: March 16, 2023
  • Revised Date: June 26, 2023
  • Accepted Date: July 10, 2023
  • Molecular Tagging Velocimetry (MTV) and Particle Imaging Velocimetry (PIV) are often used for flow visualization and velocity field imaging. However, the requirement for tracer particles can bring systematic errors to the velocity measurement of PIV method when the tracer particles have poor followability and uneven distribution. In the case of MTV, although particle seeding is not required, the finite fluorescence lifetime of the tracer molecules typically constrains its use only in high-speed and supersonic flows. To develop a velocity field imaging method with no requirements of tracer particles and suitable for low-speed flows, a novel MTV method based on infrared (IR) laser-induced fluorescence is developed and verified in axisymmetric turbulent jet of carbon dioxide. Resonant vibrational transition of the small gas molecule is selectively excited by an infrared pulsed laser to achieve molecular tagging, and the fluorescence distributions of the excited molecules at different instants are then imaged by an infrared camera, from which the velocity distributions are deduced. The effects of the molecular vibrational energy transfer process model, finite fluorescence lifetime, lateral velocity component and molecular diffusion motion on the fluorescence distribution are analyzed to improve the accuracy of the velocity measurement. The proposed method has been successfully verified in carbon dioxide turbulent jets with velocities ranging from 5 m/s to 51 m/s, and the radial distribution of the axial velocity in the main region of the jet is measured. The radial spatial resolution can reach 107 microns, and the velocity distribution is consistent with the theoretical calculation of turbulent jets and previous experimental results. The relative uncertainty of velocity measurement is better than 8%. This method can be used to obtain high-resolution instantaneous velocity imaging of low-speed flow field. Subsequently, by improving the pulse power, excitation efficiency and repetition frequency of the infrared laser, the measurement accuracy, spatial resolution and temporal resolution of this method can be further improved. Therefore, the proposed method bears great potential to provide a quantitative velocity field imaging method in the near-wall flow, micro-scale flow and large gradient flow where it is difficult to introduce tracer particles.
  • [1]
    杨富荣, 陈力, 闫博, 等. 干涉瑞利散射测速技术在跨超声速风洞的湍流度测试应用研究[J]. 实验流体力学, 2018, 32(3): 82–86. DOI: 10.11729/syltlx20170103

    YANG F R, CHEN L, YAN B, et al. Measurement of turbulence velocity fluctuations in transonic wind tunnel using Interferometric Rayleigh Scattering diagnostic technique[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 82–86. doi: 10.11729/syltlx20170103
    [2]
    李晓辉, 王宏伟, 黄湛, 等. 层析粒子图像测速技术研究进展[J]. 实验流体力学, 2021, 35(1): 86–96. DOI: 10.11729/syltlx20190160

    LI X H, WANG H W, HUANG Z, et al. Research advances of tomographic particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 86–96. doi: 10.11729/syltlx20190160
    [3]
    吴戈, 李韵, 万明罡, 等. 平面激光诱导荧光技术在超声速燃烧火焰结构可视化中的应用[J]. 实验流体力学, 2020, 34(3): 70–77. DOI: 10.11729/syltlx20190168

    WU G, LI Y, WAN M G, et al. Visualization of flame structure in supersonic combustion by Planar Laser Induced Fluorescence technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 70–77. doi: 10.11729/syltlx20190168
    [4]
    OJO A O, FOND B, VAN WACHEM B G M, et al. Thermographic laser Doppler velocimetry[J]. Optics Letters, 2015, 40(20): 4759–4762. doi: 10.1364/ol.40.004759
    [5]
    GU C L, ZOU X, ZUO Z, et al. Doppler velocimeter based on dual-comb absorption spectroscopy[J]. Photonics Research, 2020, 8(12): 1895–1903. doi: 10.1364/prj.398876
    [6]
    LI F B, ZHANG H B, BAI B F. A review of molecular tagging measurement technique[J]. Measurement, 2021, 171: 108790. doi: 10.1016/j.measurement.2020.108790
    [7]
    WANG H P, YANG Z X, LI B L, et al. Predicting the near-wall velocity of wall turbulence using a neural network for particle image velocimetry[J]. Physics of Fluids, 2020, 32(11): 115105. doi: 10.1063/5.0023786
    [8]
    许德辰, 张悦, 刘欣乐, 等. 基于粒子追踪测速的壁面摩擦应力测量[J]. 实验流体力学, 2022, 36(2): 131–138. DOI: 10.11729/syltlx20210156

    XU D C, ZHANG Y, LIU X L, et al. Measurement of wall-shear stress via micro-particle tracking velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 131–138. doi: 10.11729/syltlx20210156
    [9]
    TIEN W H, DABIRI D, HOVE J R. Color-coded three-dimensional micro particle tracking velocimetry and application to micro backward-facing step flows[J]. Experiments in Fluids, 2014, 55(3): 1684. doi: 10.1007/s00348-014-1684-x
    [10]
    RAFFEL M, WILLERT C E, SCARANO F, et al. Particle image velocimetry: a practical guide[M]. Array Cham: Springer, 2018.
    [11]
    RAGNI D, SCHRIJER F, VAN OUDHEUSDEN B W, et al. Particle tracer response across shocks measured by PIV[J]. Experiments in Fluids, 2011, 50(1): 53–64. doi: 10.1007/s00348-010-0892-2
    [12]
    SAMIMY M, LELE S K. Motion of particles with inertia in a compressible free shear layer[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(8): 1915–1923. doi: 10.1063/1.857921
    [13]
    MOLEZZI M J, DUTTON J C. Application of particle image velocimetry in high-speed separated flows[J]. AIAA Journal, 1993, 31(3): 438–446. doi: 10.2514/3.11349
    [14]
    PAN F, SÁNCHEZ-GONZÁLEZ R, MCILVOY M H, et al. Simultaneous three-dimensional velocimetry and thermo-metry in gaseous flows using the stereoscopic vibrationally excited nitric oxide monitoring technique[J]. Optics Letters, 2016, 41(7): 1376–1379. doi: 10.1364/ol.41.001376
    [15]
    YE J F, SHI D Y, SONG W Y, et al. Investigation of turbulence flow characteristics in a dual-mode scramjet combustor using hydroxyl tagging velocimetry[J]. Acta Astronautica, 2019, 157: 276–281. doi: 10.1016/j.actaastro.2018.12.040
    [16]
    BATHEL B, JOHANSEN C, DANEHY P, et al. Review of fluorescence-based velocimetry techniques to study high-speed compressible flows[C]//Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013. doi: 10.2514/6.2013-339https://doi.org/
    [17]
    CHEN F, LI H X, HU H. Molecular tagging techniques and their applications to the study of complex thermal flow phenomena[J]. Acta Mechanica Sinica, 2015, 31(4): 425–445. doi: 10.1007/s10409-015-0464-z
    [18]
    MIRZAEI M, DAM N J, VAN DE WATER W. Molecular tagging velocimetry in turbulence using biacetyl[J]. Physical Review E, 2012, 86(4): 046318. doi: 10.1103/physreve.86.046318
    [19]
    杨文斌, 陈力, 闫博, 等. 基于飞秒激光电子激发标记测速技术的剪切流场速度测量[J]. 实验流体力学, 2022, 36(4): 94–102. DOI: 10.11729/syltlx20210060

    YANG W B, CHEN L, YAN B, et al. Transient velocity measurement of shear flow using Femtosecond Laser Electronic Excitation Tagging[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 94–102. doi: 10.11729/syltlx20210060
    [20]
    MILES R, COHEN C, CONNORS J, et al. Velocity measurements by vibrational tagging and fluorescent probing of oxygen[J]. Optics Letters, 1987, 12(11): 861–863. doi: 10.1364/OL.12.000861
    [21]
    BALL C G, FELLOUAH H, POLLARD A. The flow field in turbulent round free jets[J]. Progress in Aerospace Sciences, 2012, 50: 1–26. doi: 10.1016/j.paerosci.2011.10.002
    [22]
    KAUSHIK M, KUMAR R, HUMRUTHA G. Review of computational fluid dynamics studies on jets[J]. American Journal of Fluid Dynamics, 2015, 5(3A): 1–11. doi: 10.5923/s.ajfd.201501.01
    [23]
    ABRAMOVICH G N, GIRSHOVICH T A, KRASHE-NINNIKOV S I, et al. The theory of turbulent jets[M]. Moscow: MIT Press, 1984.
    [24]
    RAJARATNAM N. Turbulent jets[M]. New York: Elsevier, 1976.
    [25]
    SONG Z H, WANG W T, ZHU N, et al. Gas velocimetry based on infrared laser-induced fluorescence[J]. Physics of Fluids, 2021, 33(12): 125126. doi: 10.1063/5.0074367

Catalog

    Article Metrics

    Article views (271) PDF downloads (77) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日