Citation: | HU Z, SONG Z H, WANG W T, et al. Infrared molecular tagging velocimetry [J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 41-48. DOI: 10.11729/syltlx20230036 |
[1] |
杨富荣, 陈力, 闫博, 等. 干涉瑞利散射测速技术在跨超声速风洞的湍流度测试应用研究[J]. 实验流体力学, 2018, 32(3): 82–86. DOI: 10.11729/syltlx20170103
YANG F R, CHEN L, YAN B, et al. Measurement of turbulence velocity fluctuations in transonic wind tunnel using Interferometric Rayleigh Scattering diagnostic technique[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 82–86. doi: 10.11729/syltlx20170103
|
[2] |
李晓辉, 王宏伟, 黄湛, 等. 层析粒子图像测速技术研究进展[J]. 实验流体力学, 2021, 35(1): 86–96. DOI: 10.11729/syltlx20190160
LI X H, WANG H W, HUANG Z, et al. Research advances of tomographic particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 86–96. doi: 10.11729/syltlx20190160
|
[3] |
吴戈, 李韵, 万明罡, 等. 平面激光诱导荧光技术在超声速燃烧火焰结构可视化中的应用[J]. 实验流体力学, 2020, 34(3): 70–77. DOI: 10.11729/syltlx20190168
WU G, LI Y, WAN M G, et al. Visualization of flame structure in supersonic combustion by Planar Laser Induced Fluorescence technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 70–77. doi: 10.11729/syltlx20190168
|
[4] |
OJO A O, FOND B, VAN WACHEM B G M, et al. Thermographic laser Doppler velocimetry[J]. Optics Letters, 2015, 40(20): 4759–4762. doi: 10.1364/ol.40.004759
|
[5] |
GU C L, ZOU X, ZUO Z, et al. Doppler velocimeter based on dual-comb absorption spectroscopy[J]. Photonics Research, 2020, 8(12): 1895–1903. doi: 10.1364/prj.398876
|
[6] |
LI F B, ZHANG H B, BAI B F. A review of molecular tagging measurement technique[J]. Measurement, 2021, 171: 108790. doi: 10.1016/j.measurement.2020.108790
|
[7] |
WANG H P, YANG Z X, LI B L, et al. Predicting the near-wall velocity of wall turbulence using a neural network for particle image velocimetry[J]. Physics of Fluids, 2020, 32(11): 115105. doi: 10.1063/5.0023786
|
[8] |
许德辰, 张悦, 刘欣乐, 等. 基于粒子追踪测速的壁面摩擦应力测量[J]. 实验流体力学, 2022, 36(2): 131–138. DOI: 10.11729/syltlx20210156
XU D C, ZHANG Y, LIU X L, et al. Measurement of wall-shear stress via micro-particle tracking velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 131–138. doi: 10.11729/syltlx20210156
|
[9] |
TIEN W H, DABIRI D, HOVE J R. Color-coded three-dimensional micro particle tracking velocimetry and application to micro backward-facing step flows[J]. Experiments in Fluids, 2014, 55(3): 1684. doi: 10.1007/s00348-014-1684-x
|
[10] |
RAFFEL M, WILLERT C E, SCARANO F, et al. Particle image velocimetry: a practical guide[M]. Array Cham: Springer, 2018.
|
[11] |
RAGNI D, SCHRIJER F, VAN OUDHEUSDEN B W, et al. Particle tracer response across shocks measured by PIV[J]. Experiments in Fluids, 2011, 50(1): 53–64. doi: 10.1007/s00348-010-0892-2
|
[12] |
SAMIMY M, LELE S K. Motion of particles with inertia in a compressible free shear layer[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(8): 1915–1923. doi: 10.1063/1.857921
|
[13] |
MOLEZZI M J, DUTTON J C. Application of particle image velocimetry in high-speed separated flows[J]. AIAA Journal, 1993, 31(3): 438–446. doi: 10.2514/3.11349
|
[14] |
PAN F, SÁNCHEZ-GONZÁLEZ R, MCILVOY M H, et al. Simultaneous three-dimensional velocimetry and thermo-metry in gaseous flows using the stereoscopic vibrationally excited nitric oxide monitoring technique[J]. Optics Letters, 2016, 41(7): 1376–1379. doi: 10.1364/ol.41.001376
|
[15] |
YE J F, SHI D Y, SONG W Y, et al. Investigation of turbulence flow characteristics in a dual-mode scramjet combustor using hydroxyl tagging velocimetry[J]. Acta Astronautica, 2019, 157: 276–281. doi: 10.1016/j.actaastro.2018.12.040
|
[16] |
BATHEL B, JOHANSEN C, DANEHY P, et al. Review of fluorescence-based velocimetry techniques to study high-speed compressible flows[C]//Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013. doi: 10.2514/6.2013-339https://doi.org/
|
[17] |
CHEN F, LI H X, HU H. Molecular tagging techniques and their applications to the study of complex thermal flow phenomena[J]. Acta Mechanica Sinica, 2015, 31(4): 425–445. doi: 10.1007/s10409-015-0464-z
|
[18] |
MIRZAEI M, DAM N J, VAN DE WATER W. Molecular tagging velocimetry in turbulence using biacetyl[J]. Physical Review E, 2012, 86(4): 046318. doi: 10.1103/physreve.86.046318
|
[19] |
杨文斌, 陈力, 闫博, 等. 基于飞秒激光电子激发标记测速技术的剪切流场速度测量[J]. 实验流体力学, 2022, 36(4): 94–102. DOI: 10.11729/syltlx20210060
YANG W B, CHEN L, YAN B, et al. Transient velocity measurement of shear flow using Femtosecond Laser Electronic Excitation Tagging[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 94–102. doi: 10.11729/syltlx20210060
|
[20] |
MILES R, COHEN C, CONNORS J, et al. Velocity measurements by vibrational tagging and fluorescent probing of oxygen[J]. Optics Letters, 1987, 12(11): 861–863. doi: 10.1364/OL.12.000861
|
[21] |
BALL C G, FELLOUAH H, POLLARD A. The flow field in turbulent round free jets[J]. Progress in Aerospace Sciences, 2012, 50: 1–26. doi: 10.1016/j.paerosci.2011.10.002
|
[22] |
KAUSHIK M, KUMAR R, HUMRUTHA G. Review of computational fluid dynamics studies on jets[J]. American Journal of Fluid Dynamics, 2015, 5(3A): 1–11. doi: 10.5923/s.ajfd.201501.01
|
[23] |
ABRAMOVICH G N, GIRSHOVICH T A, KRASHE-NINNIKOV S I, et al. The theory of turbulent jets[M]. Moscow: MIT Press, 1984.
|
[24] |
RAJARATNAM N. Turbulent jets[M]. New York: Elsevier, 1976.
|
[25] |
SONG Z H, WANG W T, ZHU N, et al. Gas velocimetry based on infrared laser-induced fluorescence[J]. Physics of Fluids, 2021, 33(12): 125126. doi: 10.1063/5.0074367
|
[1] | WANG Linsen, TU Xiaobo, ZHOU Quan, CHE Qingfeng, WANG Yuhang, CHEN Shuang. Study on the visualization of scramjet high temperature flow field based on acetone tagging technology[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 87-94. DOI: 10.11729/syltlx20220088 |
[2] | YAN Sijie, DING Pengji, WANG Linsen, LI Jie, XU Zhenyu, CHEN Shuang. Two-color-Scheimpflug laser-induced incandescence technique for soot concentration measurements in space-limited combustion field[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20240092 |
[3] | YANG Wenbin, CHEN Li, YAN Bo, WANG Chaozong, ZHOU Jiangning, CHEN Shuang, MU Jinhe, WANG Jianxin, QIU Rong. Transient velocity measurement of shear flow using Femtosecond Laser Electronic Excitation Tagging[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 94-102. DOI: 10.11729/syltlx20210060 |
[4] | WU Ge, LI Yun, WAN Minggang, ZHU Jiajian, YANG Yixin, SUN Mingbo. Visualization of flame structure in supersonic combustion by Planar Laser Induced Fluorescence technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 70-77. DOI: 10.11729/syltlx20190168 |
[5] | Huang Zhenli, Zhou Weihu, Qu Zhaosong. Study on three dimensional laser-induced fluorescence (3DLIF) techniques and its instrument[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 1-14. DOI: 10.11729/syltlx20160173 |
[6] | Luo Jie, Jiang Gang, Wang Guolin, Ma Haojun, Liu Liping, Zhang Jun, Pan Dexian, Xing Yingli, Tang Fei. Preliminary application of planar two-photon LIF measurements of atom O in high-enthalpy flow field[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 67-72. DOI: 10.11729/syltlx20160033 |
[7] | Zhu Jiajian, Zhao Guoyan, Long Tiehan, Sun Mingbo, Li Qing, Liang Jianhan. Simultaneous OH and CH2O PLIF imaging of flame structures[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 55-60. DOI: 10.11729/syltlx20160026 |
[8] | GENG Hui, ZHAI Zhen-chen, ZHOU Song-bai, CHEN Jun, LIU Jun, ZHOU Jin. Investigation of the density flowfield of under-expanded free jet with acetone planar laser-induced fluorescence[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(3): 85-90. DOI: 10.3969/j.issn.1672-9897.2006.03.017 |
[9] | LIF temperature measurement of arcjet by O2-laser induced fluorescence[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(1): 84-88. DOI: 10.3969/j.issn.1672-9897.2004.01.019 |
[10] | ZHAO Jian-rong, CHEN Li-hong, YU Gang, YANG Shi-run, HAN Bai. Planar laser induced fluorescence imaging of OH distribution in flames[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(2): 67-71. DOI: 10.3969/j.issn.1672-9897.2000.02.012 |