Citation: | HU Z, SONG Z H, WANG W T, et al. Infrared molecular tagging velocimetry [J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 41-48. DOI: 10.11729/syltlx20230036 |
[1] |
杨富荣, 陈力, 闫博, 等. 干涉瑞利散射测速技术在跨超声速风洞的湍流度测试应用研究[J]. 实验流体力学, 2018, 32(3): 82–86. DOI: 10.11729/syltlx20170103
YANG F R, CHEN L, YAN B, et al. Measurement of turbulence velocity fluctuations in transonic wind tunnel using Interferometric Rayleigh Scattering diagnostic technique[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 82–86. doi: 10.11729/syltlx20170103
|
[2] |
李晓辉, 王宏伟, 黄湛, 等. 层析粒子图像测速技术研究进展[J]. 实验流体力学, 2021, 35(1): 86–96. DOI: 10.11729/syltlx20190160
LI X H, WANG H W, HUANG Z, et al. Research advances of tomographic particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 86–96. doi: 10.11729/syltlx20190160
|
[3] |
吴戈, 李韵, 万明罡, 等. 平面激光诱导荧光技术在超声速燃烧火焰结构可视化中的应用[J]. 实验流体力学, 2020, 34(3): 70–77. DOI: 10.11729/syltlx20190168
WU G, LI Y, WAN M G, et al. Visualization of flame structure in supersonic combustion by Planar Laser Induced Fluorescence technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 70–77. doi: 10.11729/syltlx20190168
|
[4] |
OJO A O, FOND B, VAN WACHEM B G M, et al. Thermographic laser Doppler velocimetry[J]. Optics Letters, 2015, 40(20): 4759–4762. doi: 10.1364/ol.40.004759
|
[5] |
GU C L, ZOU X, ZUO Z, et al. Doppler velocimeter based on dual-comb absorption spectroscopy[J]. Photonics Research, 2020, 8(12): 1895–1903. doi: 10.1364/prj.398876
|
[6] |
LI F B, ZHANG H B, BAI B F. A review of molecular tagging measurement technique[J]. Measurement, 2021, 171: 108790. doi: 10.1016/j.measurement.2020.108790
|
[7] |
WANG H P, YANG Z X, LI B L, et al. Predicting the near-wall velocity of wall turbulence using a neural network for particle image velocimetry[J]. Physics of Fluids, 2020, 32(11): 115105. doi: 10.1063/5.0023786
|
[8] |
许德辰, 张悦, 刘欣乐, 等. 基于粒子追踪测速的壁面摩擦应力测量[J]. 实验流体力学, 2022, 36(2): 131–138. DOI: 10.11729/syltlx20210156
XU D C, ZHANG Y, LIU X L, et al. Measurement of wall-shear stress via micro-particle tracking velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 131–138. doi: 10.11729/syltlx20210156
|
[9] |
TIEN W H, DABIRI D, HOVE J R. Color-coded three-dimensional micro particle tracking velocimetry and application to micro backward-facing step flows[J]. Experiments in Fluids, 2014, 55(3): 1684. doi: 10.1007/s00348-014-1684-x
|
[10] |
RAFFEL M, WILLERT C E, SCARANO F, et al. Particle image velocimetry: a practical guide[M]. Array Cham: Springer, 2018.
|
[11] |
RAGNI D, SCHRIJER F, VAN OUDHEUSDEN B W, et al. Particle tracer response across shocks measured by PIV[J]. Experiments in Fluids, 2011, 50(1): 53–64. doi: 10.1007/s00348-010-0892-2
|
[12] |
SAMIMY M, LELE S K. Motion of particles with inertia in a compressible free shear layer[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(8): 1915–1923. doi: 10.1063/1.857921
|
[13] |
MOLEZZI M J, DUTTON J C. Application of particle image velocimetry in high-speed separated flows[J]. AIAA Journal, 1993, 31(3): 438–446. doi: 10.2514/3.11349
|
[14] |
PAN F, SÁNCHEZ-GONZÁLEZ R, MCILVOY M H, et al. Simultaneous three-dimensional velocimetry and thermo-metry in gaseous flows using the stereoscopic vibrationally excited nitric oxide monitoring technique[J]. Optics Letters, 2016, 41(7): 1376–1379. doi: 10.1364/ol.41.001376
|
[15] |
YE J F, SHI D Y, SONG W Y, et al. Investigation of turbulence flow characteristics in a dual-mode scramjet combustor using hydroxyl tagging velocimetry[J]. Acta Astronautica, 2019, 157: 276–281. doi: 10.1016/j.actaastro.2018.12.040
|
[16] |
BATHEL B, JOHANSEN C, DANEHY P, et al. Review of fluorescence-based velocimetry techniques to study high-speed compressible flows[C]//Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013. doi: 10.2514/6.2013-339https://doi.org/
|
[17] |
CHEN F, LI H X, HU H. Molecular tagging techniques and their applications to the study of complex thermal flow phenomena[J]. Acta Mechanica Sinica, 2015, 31(4): 425–445. doi: 10.1007/s10409-015-0464-z
|
[18] |
MIRZAEI M, DAM N J, VAN DE WATER W. Molecular tagging velocimetry in turbulence using biacetyl[J]. Physical Review E, 2012, 86(4): 046318. doi: 10.1103/physreve.86.046318
|
[19] |
杨文斌, 陈力, 闫博, 等. 基于飞秒激光电子激发标记测速技术的剪切流场速度测量[J]. 实验流体力学, 2022, 36(4): 94–102. DOI: 10.11729/syltlx20210060
YANG W B, CHEN L, YAN B, et al. Transient velocity measurement of shear flow using Femtosecond Laser Electronic Excitation Tagging[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 94–102. doi: 10.11729/syltlx20210060
|
[20] |
MILES R, COHEN C, CONNORS J, et al. Velocity measurements by vibrational tagging and fluorescent probing of oxygen[J]. Optics Letters, 1987, 12(11): 861–863. doi: 10.1364/OL.12.000861
|
[21] |
BALL C G, FELLOUAH H, POLLARD A. The flow field in turbulent round free jets[J]. Progress in Aerospace Sciences, 2012, 50: 1–26. doi: 10.1016/j.paerosci.2011.10.002
|
[22] |
KAUSHIK M, KUMAR R, HUMRUTHA G. Review of computational fluid dynamics studies on jets[J]. American Journal of Fluid Dynamics, 2015, 5(3A): 1–11. doi: 10.5923/s.ajfd.201501.01
|
[23] |
ABRAMOVICH G N, GIRSHOVICH T A, KRASHE-NINNIKOV S I, et al. The theory of turbulent jets[M]. Moscow: MIT Press, 1984.
|
[24] |
RAJARATNAM N. Turbulent jets[M]. New York: Elsevier, 1976.
|
[25] |
SONG Z H, WANG W T, ZHU N, et al. Gas velocimetry based on infrared laser-induced fluorescence[J]. Physics of Fluids, 2021, 33(12): 125126. doi: 10.1063/5.0074367
|
重要公告
www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。
《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。
相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。
请广大读者、作者相互转告,广为宣传!
感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!
《实验流体力学》编辑部
2021年8月13日