Citation: | DU Y C, MEI Y G. Study on the critical tunnel length distribution characteristics of high-speed maglev railway single-track tunnel based on pressure comfort[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 44-52. DOI: 10.11729/syltlx20220120 |
[1] |
PETERS J L. Aerodynamics of very high speed trains and maglev vehicles: state of art and future potential[J]. International Journal of Vehicle Design, 1983, SP3: 308–341.
|
[2] |
SCHETZ J A. Aerodynamics of high-speed trains[J]. Annual Review of Fluid Mechanics, 2001, 33: 371–414. doi: 10.1146/annurev.fluid.33.1.371
|
[3] |
TIELKES Th. Aerodynamic Aspects of Maglev Systems[C]// Proc of MAGLEV' 2006: The 19th international conference on magnetically levitated systems and linear drives. 2006.
|
[4] |
BERLITZ T, WORMSTALL-REITSCHUSTER H J, TIELKES Th, et al. Pressure comfort–meeting future demands for high-speed trains[C]//Proceedings of the World Congress of Railway Research (WCRR). 2003.
|
[5] |
梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.
MEI Y G, ZHOU C H, XU J L. Aerodynamics of high-speed railway tunnel[M]. Beijing: Science Press, 2009.
|
[6] |
BAKER C J. A review of train aerodynamics Part 1 emdash Fundamentals[J]. Aeronautical Journal, 2014, 118(Mar.TN.1201): 201–228.
|
[7] |
TIAN H Q. Review of research on high-speed railway aerodynamics in China[J]. Transportation Safety and Environment, 2019, 1(1): 1–21. doi: 10.1093/tse/tdz014
|
[8] |
韩运动, 姚松, 陈大伟, 等. 基于实车试验的高速列车隧道压力波影响因素[J]. 中南大学学报(自然科学版), 2017, 48(5): 1404–1412.
HAN Y D, YAO S, CHEN D W, et al. Influential factors of tunnel pressure wave on high-speed train by real vehicle test[J]. Journal of Central South University (Science and Technology), 2017, 48(5): 1404–1412.
|
[9] |
王志钧, 梅元贵. 高速列车压力舒适性环境特征的实车试验研究[J]. 空气动力学学报, 2021, 39(5): 170–180. DOI: 10.7638/kqdlxxb-2021.0248
WANG Z J, MEI Y G. Field study of pressure comfort environment characteristics of high-speed train[J]. Acta Aerodynamica Sinica, 2021, 39(5): 170–180. doi: 10.7638/kqdlxxb-2021.0248
|
[10] |
YANG Q S, SONG J H, YANG G W. A moving model rig with a scale ratio of 1/8 for high speed train aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 152: 50–58. doi: 10.1016/j.jweia.2016.03.002
|
[11] |
肖京平, 黄志祥, 陈立. 高速列车空气动力学研究技术综述[J]. 力学与实践, 2013, 35(2): 1–12. DOI: 10.6052/1000-0879-13-063
XIAO J, HUANG Z, CHEN L. Review of aerodynamic investigations for high speed train[J]. Mechanics in engineering, 2013, 35(2): 1–12. doi: 10.6052/1000-0879-13-063
|
[12] |
梅元贵, 张成玉, 周朝晖, 等. 单列高速列车通过特长隧道时耳感不适问题研究[J]. 机械工程学报, 2015, 51(14): 100–107.
MEI Y G, ZHANG C Y, ZHOU C H, et al. Research on the aural discomfort when a single train passes through a super long tunnel[J]. Journal of Mechanical Engineering, 2015, 51(14): 100–107.
|
[13] |
UIC. Measures to ensure the technical compability of high-speed trains: UIC CODE 660[S]. 2002.
|
[14] |
中国铁路总公司. 时速350公里中国标准动车组暂行技术条件: TJ/CL342-2014 [S]. 2014.
|
[15] |
山崎幹男, 若原敏裕, 永長隆昭, et al. 超高速鉄道トンネル内に生じる圧力変動評価[C]//土木学会論文集. 2003.
|
[16] |
梅元贵, 张志超, 杜健, 等. 高速磁浮单列车通过隧道时车外压力数值模拟研究[J]. 中国铁道科学, 2021, 42(6): 78–89.
MEI Y G, ZHANG Z C, DU J, et al. Numerical simulation of external pressure caused by high-speed maglev single train passing tunnel[J]. China Railway Science, 2021, 42(6): 78–89.
|
[17] |
国家铁路局. 磁浮铁路技术标准(试行): TB10630-2019[S]. 北京: 中国铁道出版社有限公司, 2019.
|
[18] |
REPUBLIC of BULGARIA GOVERNMENT. Railway applications-Aerodynamics - Part 5 Requirements and test procedures for aerodynamics in tunnels: EN 14067-5: 2006 + A1: 2010 [S/OL]. [2022-11-01]. https://knowledge.bsigroup.com/products/railway-applications-aerodynamics-requirements-and-test-procedures-for-aerodynamics-in-tunnels/standard.
|
[19] |
林洋, 何德华, 白夜, 等. 高速列车隧道交会最不利长度实车试验研究[J]. 铁道机车车辆, 2017, 37(6): 26–30. DOI: 10.3969/j.issn.1008-7842.2017.06.06
LIN Y, HE D H, BAI Y, et al. Vehicle test study on the most unfavorable intersection length of high-speed trains in the tunnel[J]. Railway Locomotive & Car, 2017, 37(6): 26–30. doi: 10.3969/j.issn.1008-7842.2017.06.06
|
[20] |
马瑶. 山区隧道条件高速列车车体气密性特征的数值模拟研究[D]. 兰州: 兰州交通大学, 2020.
MA Y. Numerical simulation study on air-tightness characteristics of high speed trains in mountainous tunnel conditions[D]. Lanzhou: Lanzhou Jiatong University, 2020.
|
[21] |
史宪明, 曾宏飞, 杜云超, 等. 考虑空气动力学效应的城市轨道交通隧道设计方法: 以湖南凤凰中低速磁浮双线隧道为例[J]. 现代隧道技术, 2019, 56(S1): 81–86.
SHI X M, ZENG H F, DU Y C, et al. Design method of urban rail transit tunnel clearance area in consideration of aerodynamic effects—case study of Fenghuang medium and low speed maglev double-line tunnels[J]. Modern Tunnelling Technology, 2019, 56(S1): 81–86.
|
[22] |
焦齐柱, 肖明清, 周俊超, 等. 基于乘员耳感舒适性的时速600 km磁悬浮单线隧道最优净空面积研究[J]. 铁道科学与工程学报, 2020, 17(12): 2993–3002.
JIAO Q Z, XIAO M Q, ZHOU J C, et al. Study on the optimal clearance area of a single line maglev tunnel with a speed of 600 km/h based on the ear comfort of passengers[J]. Journal of Railway Science and Engineering, 2020, 17(12): 2993–3002.
|
[23] |
张芯茹. 高速磁浮隧道压力波特性及隧道净空面积研究[D]. 兰州: 兰州交通大学, 2020.
ZHANG X R. Research on tunnel pressure wave characteristics and tunnel clearance area of high-speed maglev[D]. Lanzhou: Lanzhou Jiatong University, 2020.
|
[24] |
梅元贵, 赵汗冰, 陈大伟, 等. 时速600 km磁浮列车驶入隧道时初始压缩波特征的数值模拟[J]. 交通运输工程学报, 2020, 20(1): 120–131.
MEI Y G, ZHAO H B, CHEN D W, et al. Numerical simulation of initial compression wave characteristics of 600 km·h-1 maglev train entering tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 120–131.
|
[25] |
SIMA M. New unifying procedure for working with pressure tightness of rail passenger vehicles[C]//Proceedings of the 11th International symposium on the aerodynamics and ventilation of vehicle tunnels. 2003.
|
[26] |
JOHNSON T. The Need for a Standardized Definition of a sealing Parameter [C]//Proc of Conference on Cost-Effectiveness of Presssure Sealed Coaches. 1999.
|
[27] |
YANG M Z, ZHONG S, ZHANG L, et al. 600 km/h moving model rig for high-speed train aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 227: 105063. doi: 10.1016/j.jweia.2022.105063
|
[28] |
王建宇, 万晓燕, 吴剑. 隧道长度对瞬变压力的影响[J]. 现代隧道技术, 2008, 45(6): 1–4, 15. DOI: 10.3969/j.issn.1009-6582.2008.06.001
WANG J Y, WAN X Y, WU J. Influence of tunnel lengths upon air pressure fluctuation in high speed railway tunnels[J]. Modern Tunnelling Technology, 2008, 45(6): 1–4, 15. doi: 10.3969/j.issn.1009-6582.2008.06.001
|
[1] | ZHU Dongyu, FENG Qiang, Han Xiaotao, Yang Ximing, Cui Xiaochun, Yuan Li. Researches on a large natural moveable icing wind tunnel and test methods[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 52-61. DOI: 10.11729/syltlx20210100 |
[2] | GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, YANG Shengke, LIN Wei. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. DOI: 10.11729/syltlx20190113 |
[3] | ZHU Xinxin, LONG Yongsheng, SHI Youan, YANG Qingtao, ZHOU Ping, ZHAO Shunhong. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 87-93. DOI: 10.11729/syltlx20190062 |
[4] | Zhang Hui, Fan Litao. Correlation analysis of large low speed wind tunnel test on CHN-T1 calibration model[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 106-111. DOI: 10.11729/syltlx20180046 |
[5] | Gao Guochi, Li Baoliang, Ding Li, Wang Zixu, Ni Zhangsong. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 95-101. DOI: 10.11729/syltlx20180064 |
[6] | Wang Zixu, Shen Hao, Guo Long, Guo Xiangdong, Ni Zhangsong. Cloud calibration method of 3m×2m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67. DOI: 10.11729/syltlx20170163 |
[7] | Zhou Feng, Feng Lijuan, Xu Chaojun, Zhao Keliang, Han Zhirong. Determination and verification of critical ice shape for the certification of civil aircraft[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 8-13. DOI: 10.11729/syltlx20160019 |
[8] | Shen Chen, Yang Zhigang. Numerical methods exploration and experimental validation of Ahmed model with consideration of fluid-solid-interaction effect[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 37-42. DOI: 10.11729/syltlx20130017 |
[9] | YUAN Hong-gang, YANG Yong-dong, ZHANG Gui-chuan, HUANG Ming-qi. Improving techniques and validating of rotor and fuselage compound model test stand[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4): 87-90. DOI: 10.3969/j.issn.1672-9897.2012.04.018 |
[10] | GUO Shan-guang, LIU Jun, JIN Liang, LUO Shi-bin. Numerical simulation and experiment validation on shock oscillations of inner flow path of hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 7-11. DOI: 10.3969/j.issn.1672-9897.2012.01.002 |