Volume 37 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
DU Y C, MEI Y G. Study on the critical tunnel length distribution characteristics of high-speed maglev railway single-track tunnel based on pressure comfort[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 44-52 doi: 10.11729/syltlx20220120
Citation: DU Y C, MEI Y G. Study on the critical tunnel length distribution characteristics of high-speed maglev railway single-track tunnel based on pressure comfort[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 44-52 doi: 10.11729/syltlx20220120

Study on the critical tunnel length distribution characteristics of high-speed maglev railway single-track tunnel based on pressure comfort

doi: 10.11729/syltlx20220120
  • Received Date: 2022-11-01
  • Accepted Date: 2022-12-27
  • Rev Recd Date: 2022-12-23
  • Available Online: 2023-03-10
  • Publish Date: 2023-02-25
  • The different pressure fluctuation caused by a high-speed train passing through tunnels of various length can cause different degrees of pressure comfort problems for passengers. The one-dimensional compressible unsteady non-isentropic flow model characteristic line method and the time constant method pressure tightness index model were used to study the pressure wave outside the train and the pressure change characteristics inside the train under two pressure tightness indexes when a single high-speed maglev train passes through the tunnel. The concept of the critical tunnel length of the high-speed maglev single line based on the pressure comfort standard was improved, and the influence of the train speed and train dynamic pressure tightness index on the critical tunnel length was studied. It is found that: under the condition of critical tunnel length based on the maximum negative pressure value of the external pressure, the maximum negative pressure value of the internal pressure is smaller. The maximum value of the maximum pressure change in each 1, 3, 10 and 60 s in the train increases first and then decreases with the increase of the tunnel length, and there is the critical tunnel length under pressure comfort constraints. The critical tunnel length at different train speeds is different. Except for per 10 s limit conditions, the critical tunnel length under different train dynamic pressure tightness indexes is approximately the same. When a 600 km/h single-train maglev train with a dynamic pressure tightness index of 83 s passes through a 100 m2 tunnel, the critical tunnel length based on the UIC660 comfort standard is 10–12 km. The research results of this paper have good reference value for the study of tunnel clearance area and train pressure tightness based on comfort standard, and for further improvement of the theoretical system of the critical tunnel length of the rail transit based on the tunnel pressure wave effect.
  • loading
  • [1]
    PETERS J L. Aerodynamics of very high speed trains and maglev vehicles: state of art and future potential[J]. International Journal of Vehicle Design, 1983, SP3: 308–341.
    [2]
    SCHETZ J A. Aerodynamics of high-speed trains[J]. Annual Review of Fluid Mechanics, 2001, 33: 371–414. doi: 10.1146/annurev.fluid.33.1.371
    [3]
    TIELKES Th. Aerodynamic Aspects of Maglev Systems[C]// Proc of MAGLEV' 2006: The 19th international conference on magnetically levitated systems and linear drives. 2006.
    [4]
    BERLITZ T, WORMSTALL-REITSCHUSTER H J, TIELKES Th, et al. Pressure comfort–meeting future demands for high-speed trains[C]//Proceedings of the World Congress of Railway Research (WCRR). 2003.
    [5]
    梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.

    MEI Y G, ZHOU C H, XU J L. Aerodynamics of high-speed railway tunnel[M]. Beijing: Science Press, 2009.
    [6]
    BAKER C J. A review of train aerodynamics Part 1 emdash Fundamentals[J]. Aeronautical Journal, 2014, 118(Mar.TN.1201): 201–228.
    [7]
    TIAN H Q. Review of research on high-speed railway aerodynamics in China[J]. Transportation Safety and Environment, 2019, 1(1): 1–21. doi: 10.1093/tse/tdz014
    [8]
    韩运动, 姚松, 陈大伟, 等. 基于实车试验的高速列车隧道压力波影响因素[J]. 中南大学学报(自然科学版), 2017, 48(5): 1404–1412.

    HAN Y D, YAO S, CHEN D W, et al. Influential factors of tunnel pressure wave on high-speed train by real vehicle test[J]. Journal of Central South University (Science and Technology), 2017, 48(5): 1404–1412.
    [9]
    王志钧, 梅元贵. 高速列车压力舒适性环境特征的实车试验研究[J]. 空气动力学学报, 2021, 39(5): 170–180. doi: 10.7638/kqdlxxb-2021.0248

    WANG Z J, MEI Y G. Field study of pressure comfort environment characteristics of high-speed train[J]. Acta Aerodynamica Sinica, 2021, 39(5): 170–180. doi: 10.7638/kqdlxxb-2021.0248
    [10]
    YANG Q S, SONG J H, YANG G W. A moving model rig with a scale ratio of 1/8 for high speed train aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 152: 50–58. doi: 10.1016/j.jweia.2016.03.002
    [11]
    肖京平, 黄志祥, 陈立. 高速列车空气动力学研究技术综述[J]. 力学与实践, 2013, 35(2): 1–12. doi: 10.6052/1000-0879-13-063

    XIAO J, HUANG Z, CHEN L. Review of aerodynamic investigations for high speed train[J]. Mechanics in engineering, 2013, 35(2): 1–12. doi: 10.6052/1000-0879-13-063
    [12]
    梅元贵, 张成玉, 周朝晖, 等. 单列高速列车通过特长隧道时耳感不适问题研究[J]. 机械工程学报, 2015, 51(14): 100–107.

    MEI Y G, ZHANG C Y, ZHOU C H, et al. Research on the aural discomfort when a single train passes through a super long tunnel[J]. Journal of Mechanical Engineering, 2015, 51(14): 100–107.
    [13]
    UIC. Measures to ensure the technical compability of high-speed trains: UIC CODE 660[S]. 2002.
    [14]
    中国铁路总公司. 时速350公里中国标准动车组暂行技术条件: TJ/CL342-2014 [S]. 2014.
    [15]
    山崎幹男, 若原敏裕, 永長隆昭, et al. 超高速鉄道トンネル内に生じる圧力変動評価[C]//土木学会論文集. 2003.
    [16]
    梅元贵, 张志超, 杜健, 等. 高速磁浮单列车通过隧道时车外压力数值模拟研究[J]. 中国铁道科学, 2021, 42(6): 78–89.

    MEI Y G, ZHANG Z C, DU J, et al. Numerical simulation of external pressure caused by high-speed maglev single train passing tunnel[J]. China Railway Science, 2021, 42(6): 78–89.
    [17]
    国家铁路局. 磁浮铁路技术标准(试行): TB10630-2019[S]. 北京: 中国铁道出版社有限公司, 2019.
    [18]
    REPUBLIC of BULGARIA GOVERNMENT. Railway applications-Aerodynamics - Part 5 Requirements and test procedures for aerodynamics in tunnels: EN 14067-5: 2006 + A1: 2010 [S/OL]. [2022-11-01]. https://knowledge.bsigroup.com/products/railway-applications-aerodynamics-requirements-and-test-procedures-for-aerodynamics-in-tunnels/standard.
    [19]
    林洋, 何德华, 白夜, 等. 高速列车隧道交会最不利长度实车试验研究[J]. 铁道机车车辆, 2017, 37(6): 26–30. doi: 10.3969/j.issn.1008-7842.2017.06.06

    LIN Y, HE D H, BAI Y, et al. Vehicle test study on the most unfavorable intersection length of high-speed trains in the tunnel[J]. Railway Locomotive & Car, 2017, 37(6): 26–30. doi: 10.3969/j.issn.1008-7842.2017.06.06
    [20]
    马瑶. 山区隧道条件高速列车车体气密性特征的数值模拟研究[D]. 兰州: 兰州交通大学, 2020.

    MA Y. Numerical simulation study on air-tightness characteristics of high speed trains in mountainous tunnel conditions[D]. Lanzhou: Lanzhou Jiatong University, 2020.
    [21]
    史宪明, 曾宏飞, 杜云超, 等. 考虑空气动力学效应的城市轨道交通隧道设计方法: 以湖南凤凰中低速磁浮双线隧道为例[J]. 现代隧道技术, 2019, 56(S1): 81–86.

    SHI X M, ZENG H F, DU Y C, et al. Design method of urban rail transit tunnel clearance area in consideration of aerodynamic effects—case study of Fenghuang medium and low speed maglev double-line tunnels[J]. Modern Tunnelling Technology, 2019, 56(S1): 81–86.
    [22]
    焦齐柱, 肖明清, 周俊超, 等. 基于乘员耳感舒适性的时速600 km磁悬浮单线隧道最优净空面积研究[J]. 铁道科学与工程学报, 2020, 17(12): 2993–3002.

    JIAO Q Z, XIAO M Q, ZHOU J C, et al. Study on the optimal clearance area of a single line maglev tunnel with a speed of 600 km/h based on the ear comfort of passengers[J]. Journal of Railway Science and Engineering, 2020, 17(12): 2993–3002.
    [23]
    张芯茹. 高速磁浮隧道压力波特性及隧道净空面积研究[D]. 兰州: 兰州交通大学, 2020.

    ZHANG X R. Research on tunnel pressure wave characteristics and tunnel clearance area of high-speed maglev[D]. Lanzhou: Lanzhou Jiatong University, 2020.
    [24]
    梅元贵, 赵汗冰, 陈大伟, 等. 时速600 km磁浮列车驶入隧道时初始压缩波特征的数值模拟[J]. 交通运输工程学报, 2020, 20(1): 120–131.

    MEI Y G, ZHAO H B, CHEN D W, et al. Numerical simulation of initial compression wave characteristics of 600 km·h-1 maglev train entering tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 120–131.
    [25]
    SIMA M. New unifying procedure for working with pressure tightness of rail passenger vehicles[C]//Proceedings of the 11th International symposium on the aerodynamics and ventilation of vehicle tunnels. 2003.
    [26]
    JOHNSON T. The Need for a Standardized Definition of a sealing Parameter [C]//Proc of Conference on Cost-Effectiveness of Presssure Sealed Coaches. 1999.
    [27]
    YANG M Z, ZHONG S, ZHANG L, et al. 600 km/h moving model rig for high-speed train aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 227: 105063. doi: 10.1016/j.jweia.2022.105063
    [28]
    王建宇, 万晓燕, 吴剑. 隧道长度对瞬变压力的影响[J]. 现代隧道技术, 2008, 45(6): 1–4, 15. doi: 10.3969/j.issn.1009-6582.2008.06.001

    WANG J Y, WAN X Y, WU J. Influence of tunnel lengths upon air pressure fluctuation in high speed railway tunnels[J]. Modern Tunnelling Technology, 2008, 45(6): 1–4, 15. doi: 10.3969/j.issn.1009-6582.2008.06.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (3067) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return