WANG L S, TU X B, ZHOU Q, et al. Study on the visualization of scramjet high temperature flow field based on acetone tagging technology[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 87-94. DOI: 10.11729/syltlx20220088
Citation: WANG L S, TU X B, ZHOU Q, et al. Study on the visualization of scramjet high temperature flow field based on acetone tagging technology[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 87-94. DOI: 10.11729/syltlx20220088

Study on the visualization of scramjet high temperature flow field based on acetone tagging technology

More Information
  • Received Date: September 04, 2022
  • Revised Date: December 11, 2022
  • Accepted Date: December 28, 2022
  • Available Online: January 14, 2025
  • In order to further study the influence of different strut’s structure on fuel/air mixing effect, when it was in the relatively real working condition of scramjet, parts of test system were improved based on the previous work of the research group. Acetone planar laser induced fluorescence (PLIF) measurement conditions were carried out in hot test environment, and OH−PLIF measurement conditions were carried out in H2 combustion environment. The acetone PLIF fluorescence images and the OH−PLIF fluorescence images which were in the multiple cross sections with various working conditions were obtained. The results showed that the acetone PLIF signals of the four kinds of struts in hot test environment were much weaker than cold test results. However, it was still EL1 strut which had best function on fuel/air mixing effect, and that was consistent with cold test results. Under the condition of H2 ignition combustion, the generated amount and diffusion area of OH reflected that EL1 strut had a better effect on improving the combustion efficiency, and it also reflected from the side that EL1 strut was the best of four kinds of struts.

  • [1]
    乐嘉陵, 胡欲立, 刘陵. 双模态超燃冲压发动机研究进展[J]. 流体力学实验与测量, 2000, 14(1): 1–12.

    LE J L, HU Y L, LIU L. Investigation of possibilities in developing dual-mode scramjets[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(1): 1–12.
    [2]
    车竞, 唐硕. 高超声速飞行器机身/超燃冲压发动机一体化设计研究[J]. 实验流体力学, 2006, 20(2): 41–44.

    CHE J, TANG S. Research of airframe/scramjet integrated design of hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(2): 41–44.
    [3]
    俞刚, 张新宇. 燃烧室构型对超燃冲压发动机性能影响研究[J]. 流体力学实验与测量, 2000, 14(1): 72–80.

    YU G, ZHANG X Y. The effect of combustor configuration on performance of scramjet[J]. Experiments and Measure-ments in Fluid Mechanics, 2000, 14(1): 72–80.
    [4]
    周松柏, 刘君, 郭正, 等. 超燃冲压发动机燃烧室燃料喷注及其内流场的数值模拟[J]. 国防科技大学学报, 2007, 29(2): 24–28.

    ZHOU S B, LIU J, GUO Z, et al. Numerical simulation for the fuel jet and inner flowfield of scramjet combustion chamber[J]. Journal of National University of Defense Technology, 2007, 29(2): 24–28.
    [5]
    刘世杰, 潘余, 刘卫东. 超燃冲压发动机支板喷射燃料的燃烧过程试验[J]. 航空动力学报, 2009, 24(1): 55–59.

    LIU S J, PAN Y, LIU W D. Experimental study on the combustion and flow process in a scramjet with strut injector[J]. Journal of Aerospace Power, 2009, 24(1): 55–59.
    [6]
    胡志云, 叶景峰, 张振荣, 等. 航空发动机地面试验激光燃烧诊断技术研究进展[J]. 实验流体力学, 2018, 32(1): 33–42. DOI: 10.11729/syltlx20170135

    HU Z Y, YE J F, ZHANG Z R, et al. Development of laser combustion diagnostic techniques for ground aero-engine testing[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 33–42. doi: 10.11729/syltlx20170135
    [7]
    GAMBA M, GODFREY M G, RONALD K H. Ignition and near-wall burning in transverse hydrogen jets in supersonic crossflow[R]. AIAA-2011-319, 2011. doi: 10.2514/6.2011-319.
    [8]
    COLIN D M, CRAIG T J, PAUL M D, et al. OH PLIF visualization of the UVa supersonic combustion experiment: configuration C[R]. AIAA-2013-0034, 2013. doi: 10.1007/s12650-014-0197-2.
    [9]
    ANDREW D C, GAETANO M, LUCA C, et al. Dual-pump CARS measurements in the University of Virginia's Dual-Mode Scramjet: configuration “A”[R]. AIAA-2012-0114, 2012. doi: 10.2514/6.2012-114.
    [10]
    ANDREW D C, GAETANO M, LUCA C, et al. Dual-pump CARS measurements in the University of Virginia's dual-mode scramjet: configuration “C”[R]. AIAA-2013-0335, 2013.
    [11]
    KRISTIN M B, JAMES C M, MICHAEL S B, et al. Implementation of maximum-likelihood expectation-maximization algorithm for tomographic reconstruction of TDLAT measurements[R]. AIAA-2014-0985, 2014. doi: 10.2514/6.2014-0985.
    [12]
    LUCA C, EMANUELA G, ANDREW D C, et al. Nitric oxide PLIF visualization of simulated fuel-air mixing in a dual-mode scramjet[R]. AIAA-2015-0354, 2015. doi: 10.2514/6.2015-0354.
    [13]
    BUSA K M, RICE B E, MCDANIEL J C, et al. Scramjet combustion efficiency measurement via tomographic absorption spectroscopy and particle image velocimetry[J]. AIAA Journal, 2016, 54(8): 2463–2471. doi: 10.2514/1.J054662
    [14]
    BRENT A R, CHRISTOPHER A F, DANIEL R R, et al. Evaluation of mixing processes in a non-premixed rotating detonation engine using acetone PLIF imaging[R]. AIAA-2016-1198, 2016. doi: 10.2514/6.2016-1198.
    [15]
    JOHN Z R, KYLE P L, BRIAN S T. Density measurements of a high-speed, compressible flow field using acetone planar laser induced fluorescence (PLIF) [R]. AIAA-2011-987, 2011.
    [16]
    周淼. 基于丙酮平面激光诱导荧光气流混合比测量研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    ZHOU M. Research on measurements of air mixing ratio using acetone planar laser induced fluorescence[D]. Harbin: Harbin Institute of Technology, 2015.
    [17]
    曲天娇. 甲烷空气火焰丙酮PLIF与OH−PLIF同步测量方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    QU T J. Research on simultaneous measurement of acetone PLIF and OH−PLIF methane air flame[D]. Harbin: Harbin Institute of Technology, 2019.
    [18]
    王林森, 涂晓波, 王宇航, 等. 基于acetone-PLIF技术的超燃冲压发动机燃烧室燃料/空气掺混特性[J]. 航空动力学报, 2021, 36(8): 1614–1620. DOI: 10.13224/j.cnki.jasp.20200444

    WANG L S, TU X B, WANG Y H, et al. Fuel/air mixing characteristics of scramjet combustor based on acetone-PLIF technology[J]. Journal of Aerospace Power, 2021, 36(8): 1614–1620. doi: 10.13224/j.cnki.jasp.20200444
    [19]
    闫博, 孙永超, 朱家健, 等. 基于丙酮/CH2O双组分PLIF技术的横向声波激励预混火焰未燃区/预热区特性研究[J]. 实验流体力学, 2022, 36(2): 139–145. DOI: 10.11729/syltlx20210111

    YAN B, SUN Y C, ZHU J J, et al. Investigation of unburned/preheated area characteristics of a premixed flame under transverse acoustic excitation based on acetone and CH2O PLIF technology[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 139–145. doi: 10.11729/syltlx20210111
  • Related Articles

    [1]HE Chao, SUN Peng, LIN Jingzhou, XU Xiaobin, CHEN Lei. Design and application of the dynamic stage separation device in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 90-95. DOI: 10.11729/syltlx20200119
    [2]Wang Xiaopeng, Zhang Chen'an, Liu Chunfeng, Wang Famin, Ye Zhengyin. Support interference and correction of cold-flow force test for air-breathing hypersonic vehicle in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 27-33. DOI: 10.11729/syltlx20180116
    [3]Ding Feng, Liu Jun, Shen Chibing, Liu Zhen, Chen Shaohua, Huang Wei. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26. DOI: 10.11729/syltlx20180080
    [4]Xu Xiaobin, Shu Haifeng, Xie Fei, Wang Xiong, Guo Leitao. Research progress on aerodynamic test technology of hypersonic wind tunnel for air-breathing aerocraft[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 29-40. DOI: 10.11729/syltlx20180053
    [5]Deng Fan, Ye Youda, Jiao Zihan, Liu Hui. Research on HIFiRE project's hypersonic vehicle integrated design of aerodynamic and scramjet propulsion[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 73-80. DOI: 10.11729/syltlx20160125
    [6]JIANG Wei, YANG Yun-jun, CHEN He-wu. Investigations on aerodynamics of the spike-tipped hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 28-32,53. DOI: 10.3969/j.issn.1672-9897.2011.06.006
    [7]HE Kai-feng, WANG Qing, QIAN Wei-qi, HE Zheng-chun. Review of aerodynamic and aero-thermodynamic parameter estimation research for hypersonic aircraft[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5): 99-104. DOI: 10.3969/j.issn.1672-9897.2011.05.020
    [8]KHARITONOV A M, ZVEGINTSEV V I, CHIRKASHENKO V F, BRODETSKY M D, MAZHUL I I, VASENEV L G, MUYLAERT J M, KORDULLA W, PAULAT J C. Aerodynamic investigation of aerospace vehicles in the new hypersonic wind tunnel AT-303 at ITAM[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 10-19. DOI: 10.3969/j.issn.1672-9897.2006.04.002
    [9]Heat flux measurement test of the hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(1): 29-32,37. DOI: 10.3969/j.issn.1672-9897.2004.01.007
    [10]The calculations of aerodynamic heating and viscous friction forces on the surface of hypersonic flight vehicle[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(1): 8-20. DOI: 10.3969/j.issn.1672-9897.2002.01.002
  • Cited by

    Periodical cited type(3)

    1. 管新蕾,孙小姣,王维,王利军. 弧形涡流发生器对湍流相干结构及强化换热的影响. 实验流体力学. 2024(04): 104-112 . 本站查看
    2. 朱寅鑫,彭文强,罗振兵,康赢,赵志杰,程盼,刘杰夫. 全叶高合成双射流对大折转角扩压叶栅的影响. 航空学报. 2023(12): 84-95 .
    3. 蔡明,高丽敏,刘哲,黎浩学,陈顺. 亚声速压气机平面叶栅及其改型的吹风试验. 实验流体力学. 2021(02): 36-42 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close