LI W Y, WANG T, ZHANG X N, et al. Mechanism study of free-surface polygons formation in rotating fluids[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 78-87. DOI: 10.11729/syltlx20220074
Citation: LI W Y, WANG T, ZHANG X N, et al. Mechanism study of free-surface polygons formation in rotating fluids[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 78-87. DOI: 10.11729/syltlx20220074

Mechanism study of free-surface polygons formation in rotating fluids

More Information
  • Received Date: August 07, 2022
  • Revised Date: September 01, 2022
  • Accepted Date: September 06, 2022
  • Available Online: October 12, 2022
  • In order to study the formation mechanism of the polygon phenomenon in rotating fluid, a test set-up of a rotating cylinder which can produce rotating fluid was designed. Experiments on rotating fluid for different rotational frequencies, liquid heights and radii of the cylinder were performed. Based on experimental results, a composite wave theoretical model of the intersection point between the free surface of the fluid and the bottom of the container was established according to the wave equation while ignoring the specific movement inside the fluid. On this basis, the theoretical model was verified by experiments, and the rotation state on the experimental phenomenon was further studied. Based on the experimental data and previous work, this paper made empirical formula fitting to the data, and found that the fitting effect of the blackbody radiation model is the best. The results can be further applied to theoretical research to determine the physical mechanism of the phenomenon.

  • [1]
    SPOHN A, MORY M, HOPFINGER E J. Observations of vortex breakdown in an open cylindrical container with a rotating bottom[J]. Experiments in Fluids, 1993, 14(1): 70–77. doi: 10.1007/BF00196990
    [2]
    SARIC W S. Görtler vortices[J]. Annual Review of Fluid Mechanics, 1994, 26: 379–409. doi: 10.1146/annurev.fl.26.010194.002115
    [3]
    BERGMANN R, TOPHØJ L, HOMAN T A M, et al. Polygon formation and surface flow on a rotating fluid surface[J]. Journal of Fluid Mechanics, 2011, 679: 415–431. doi: 10.1017/jfm.2011.152
    [4]
    BARBOSA AGUIAR A C, READ P L, WORDSWORTH R D, et al. A laboratory model of Saturn's North Polar Hexagon[J]. Icarus, 2010, 206(2): 755–763. doi: 10.1016/j.icarus.2009.10.022
    [5]
    JANSSON T R N, HASPANG M P, JENSEN K H, et al. Polygons on a rotating fluid surface[J]. Physical Review Letters, 2006, 96(17): 174502. doi: 10.1103/PhysRevLett.96.174502
    [6]
    BORDES G, MOISY F, DAUXOIS T, et al. Experimental evidence of a triadic resonance of plane inertial waves in a rotating fluid[J]. Physics of Fluids, 2012, 24(1): 014105. doi: 10.1063/1.3675627
    [7]
    SUTHERLAND B R. The wave instability pathway to turbulence[J]. Journal of Fluid Mechanics, 2013, 724: 1–4. doi: 10.1017/jfm.2013.149
    [8]
    DAS S, SAHOO T, MEYLAN M H. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity[J]. Proceedings Mathematical, Physical, and Engineering Sciences, 2018, 474(2209): 20170223. doi: 10.1098/rspa.2017.0223
    [9]
    DUCHESNE A, BOHR T, BOHR B, et al. Nitrogen swirl: creating rotating polygons in a boiling liquid[J]. Physical Review Fluids, 2019, 4(10): 100507. doi: 10.1103/physrevfluids.4.100507
    [10]
    STEPANYANTS Y A, STUROVA I V. Rossby waves in the ocean covered by compressed ice[J]. Geophysical & Astrophysical Fluid Dynamics, 2020, 114(3): 306–316. doi: 10.1080/03091929.2020.1712716
    [11]
    RODAL M, SCHLUTOW M. Waves in the gas centrifuge: asymptotic theory and similarities with the atmosphere[J]. Journal of Fluid Mechanics, 2021, 928: A17. doi: 10.1017/jfm.2021.811
    [12]
    LOPEZ J M, MARQUES F, HIRSA A H, et al. Symmetry breaking in free-surface cylinder flows[J]. Journal of Fluid Mechanics, 2004, 502: 99–126. doi: 10.1017/s0022112003007481
    [13]
    王秉相, 程普锋, 郑宇轩, 等. 应力波在散体颗粒中的传播规律[J]. 高压物理学报, 2020, 34(4): 100–107. DOI: 10.11858/gywlxb.20200508

    WANG B X, CHENG P F, ZHENG Y X, et al. Attenuation law of stress wave in granular particles[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 100–107. doi: 10.11858/gywlxb.20200508
    [14]
    VATISTAS G H, ABDERRAHMANE H A, SIDDIQUI M H K. Experimental confirmation of Kelvin's equilibria[J]. Physical Review Letters, 2008, 100(17): 174503. doi: 10.1103/PhysRevLett.100.174503
    [15]
    VATISTAS G H. A classical flow instability and its connection to gaseous galactic disk hydrodynamics[EB/OL]. [2022-08-08]. https://arxiv.org/abs/astro-ph/0701036. doi: 10.48550/arXiv.astro-ph/0701036
    [16]
    谢彦召, 王赞基, 王群书, 等. 高空核爆电磁脉冲波形标准及特征分析[J]. 强激光与粒子束, 2003, 15(8): 781–787.

    XIE Y Z, WANG Z J, WANG Q S, et al. High altitude nuclear electromagnetic pulse waveform standards: a review[J]. High Power Laser & Particle Beams, 2003, 15(8): 781–787.
    [17]
    BACH B, LINNARTZ E C, VESTED M H, et al. From Newton's bucket to rotating polygons: experiments on surface instabilities in swirling flows[J]. Journal of Fluid Mechanics, 2014, 759: 386–403. doi: 10.1017/jfm.2014.568
  • Cited by

    Periodical cited type(1)

    1. 赖伟东,王晓君,陈文涛,潘文. 水热法制备Er~(3+)掺杂氟化物材料及其光谱特性研究. 信息记录材料. 2024(04): 21-22+26 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (319) PDF downloads (49) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日